2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
1. Многочленом называется сумма одночленов. 2. Степенью многочлена называют наибольшую из степеней входящих в него одночленов. 4. Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми. 5. Многочлен стандартного вида - многочлен, все одночлены которого приведены к стандартному виду. 6. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов. 7. Разность многочленов есть многочлен, членами которого являются все члены уменьшаемого и взятые с противоположными знаками все члены вычитаемого. 8. Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + " . Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки. Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых. 9. Чтобы найти произведение многочлена на одночлен надо каждый член многочлена умножить на этот одночлен. 11. Вынесение общего множителя за скобки. 12.Чтобы найти произведение многочленов, надо каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена 13. Разложить многочлен на множители – это значит преобразовать его в произведение двух или более многочленов 14. Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с действий сложения, вычитания и умножения.
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж:
2. Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
4. Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.
5. Многочлен стандартного вида - многочлен, все одночлены которого приведены к стандартному виду.
6. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
7. Разность многочленов есть многочлен, членами которого являются все члены уменьшаемого и взятые с противоположными знаками все члены вычитаемого.
8. Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + " .
Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.
Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых.
9. Чтобы найти произведение многочлена на одночлен надо каждый член многочлена умножить на этот одночлен.
11. Вынесение общего множителя за скобки.
12.Чтобы найти произведение многочленов, надо каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена
13. Разложить многочлен на множители – это значит преобразовать его в произведение двух или более многочленов
14. Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с действий сложения, вычитания и умножения.