Представьте в виде куба одночлена стандартного вида выражение: b^12c^15 Выполните возведение в степень: (0,3x^8b^11)^3 Найдите разность многочленов: 5x−3 и 7x+3 Найдите значение выражения: (5cd−4c^3+4d^2)+(d^2+4c^3) если c=−2 и d=3
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
По первому заданию предлагаю другие решения. Первый для тех, кто знает только проценты и пропорцию. Пусть оба шкафа сначала стоили одинаково - 100 рублей Первый шкаф подорожал на 20%. 100% --- 100 руб 20% --- х руб х = 20%*100 руб/100% = 20 руб. Новая цена первого шкафа 100+20 = 120 руб. Первый шкаф подешевел на 10% 100% --- 120 руб. 10% х руб. х = 10% * 120 руб/100% = 12 руб. Новая цена первого шкафа 120-12 = 108 руб
Второй шкаф подешевел на 10% 100% --- 100 руб 10% х руб х = 10% * 100 руб/100% = 10 руб Новая цена второго шкафа 100 - 10 = 90 руб Второй шкаф подорожал на 20% 100% 90 руб 20% х руб х = 20% * 90 руб/100% = 18 руб. Новая цена второго шкафа 90 + 18 = 108 руб.
ответ: цена будет одинаковой Второй вариант в принципе требует знание только процентов и внимательности и рассуждений. Можно решить гораздо проще и быстрее и в более общем виде: Пусть начальная цена шкафов х руб. Тогда для цены первого шкафа повышение на 20% и снижение на 10% равносильны умножению: х * 1,20 * 0,9 Объяснение. Почему умножаем на 1,20? Дело в том, что если что-то повысилось на 20%, то теперь оно составляет (100% + 20%) = 120%. А 120% - это 120 сотых, или 120/100, или 1,20. А почему умножаем на 0,9? Если что-то снизилось на 10%, то оно теперь составляет (100% - 10%) = 90%. А 90% - это 90 сотых, или 90/100, или 0,9. Для второго шкафа снижение на 10% и повышение на 20% равносильны умножению: х * 0,9 * 1,20 Как видим, оба произведения отличаются только порядком множителей, значит, они равны: х * 1,2 * 0,9 = х * 0,9 * 1,2 (Как Вы помните, 1,20 = 1,2) И равны они 1,08х Значит, исходная цена х выросла в 1,08 раз или на 8% (Мы уже знаем, что умножение на 1,08 - это повышение на 8%. 100%+8% = 108% = 108/100 = 1,08) Поэтому при начальной цене, например, 100 рублей (х=100) получаем новую цену 108 руб. (1,08х), повышение цены - на 8 рублей.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Первый для тех, кто знает только проценты и пропорцию.
Пусть оба шкафа сначала стоили одинаково - 100 рублей
Первый шкаф подорожал на 20%.
100% --- 100 руб
20% --- х руб
х = 20%*100 руб/100% = 20 руб.
Новая цена первого шкафа 100+20 = 120 руб.
Первый шкаф подешевел на 10%
100% --- 120 руб.
10% х руб.
х = 10% * 120 руб/100% = 12 руб.
Новая цена первого шкафа 120-12 = 108 руб
Второй шкаф подешевел на 10%
100% --- 100 руб
10% х руб
х = 10% * 100 руб/100% = 10 руб
Новая цена второго шкафа 100 - 10 = 90 руб
Второй шкаф подорожал на 20%
100% 90 руб
20% х руб
х = 20% * 90 руб/100% = 18 руб.
Новая цена второго шкафа 90 + 18 = 108 руб.
ответ: цена будет одинаковой
Второй вариант в принципе требует знание только процентов и внимательности и рассуждений.
Можно решить гораздо проще и быстрее и в более общем виде:
Пусть начальная цена шкафов х руб.
Тогда для цены первого шкафа повышение на 20% и снижение на 10% равносильны умножению:
х * 1,20 * 0,9
Объяснение. Почему умножаем на 1,20? Дело в том, что если что-то повысилось на 20%, то теперь оно составляет (100% + 20%) = 120%. А 120% - это 120 сотых, или 120/100, или 1,20. А почему умножаем на 0,9? Если что-то снизилось на 10%, то оно теперь составляет (100% - 10%) = 90%. А 90% - это 90 сотых, или 90/100, или 0,9.
Для второго шкафа снижение на 10% и повышение на 20% равносильны умножению:
х * 0,9 * 1,20
Как видим, оба произведения отличаются только порядком множителей, значит, они равны:
х * 1,2 * 0,9 = х * 0,9 * 1,2 (Как Вы помните, 1,20 = 1,2)
И равны они 1,08х
Значит, исходная цена х выросла в 1,08 раз или на 8% (Мы уже знаем, что умножение на 1,08 - это повышение на 8%. 100%+8% = 108% = 108/100 = 1,08)
Поэтому при начальной цене, например, 100 рублей (х=100) получаем новую цену 108 руб. (1,08х), повышение цены - на 8 рублей.