1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).
Для начала найдем область определения функции, и ее потенциальные точки разрыва
1)D(f)=R, точек разрыва нет
2) проверим функцию на четность, очевидно функция четная, т.к. при подстановке вместо икс минус икс функция вида не изменит.
3) найдем нули функции и знак функции на полученных интервалах, для этого разложим функцию на составляющие x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)
Приравняем это к нулю, тогда x=1 x=-1
Исследуем знак функции на промежутках от минус бесконечности до минус 1, от минус 1 до 1, и от 1 до +бесконечности. Для этого подставим любую точку из промежутков и получим знаки +-+ (значит на промежутке от -беск до -1 и от 1 до+беск, функция выше оси Ох, на промежутке -1 до 1 функция ниже оси Ох)
приравняв к нулю икс, получим игрик равный -1
4)найдем ассимптоты, так как точек разрыва нет, то и вертикальных ассимптот нет, найдем наклонную асимптоту, для этого вычислим предел
стремится к бесконечности, а значит ассимптот нет
5)Исследуем точки экстремума и интервалы монотонности, тогда найдем производную
4x³ и приравняем ее к нулю 4x³=0, откуда x=0. Найдем знаки слева и справа от нуля, слева минус справа плюс, значит слева от нуля функция убывает, а справа возрастает. Т.к. 0 принадлежит области определения функция, то подставим его в изначальное уравнение, получим -1. Точка (0,-1) - точка экстремума, т.к. в этой точке производная меняет знак с минуса на плюс, то это точка минимума
6) найдем точки перегиба. Для этого найдем вторую производную - производную от производной = 12x^2. приравняем к нулю и вновь получим 0, найдем знаки слева и справа, с обеих сторон +, значит функция выпукла вниз на всей области определения, и точка 0 не является точкой перегиба
7) нужно построить график по всем значениям которые мы получили
Свойства функции y=x3y=x3
Давайте опишем свойства данной функции:
1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).

Объяснение:
Для начала найдем область определения функции, и ее потенциальные точки разрыва
1)D(f)=R, точек разрыва нет
2) проверим функцию на четность, очевидно функция четная, т.к. при подстановке вместо икс минус икс функция вида не изменит.
3) найдем нули функции и знак функции на полученных интервалах, для этого разложим функцию на составляющие x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)
Приравняем это к нулю, тогда x=1 x=-1
Исследуем знак функции на промежутках от минус бесконечности до минус 1, от минус 1 до 1, и от 1 до +бесконечности. Для этого подставим любую точку из промежутков и получим знаки +-+ (значит на промежутке от -беск до -1 и от 1 до+беск, функция выше оси Ох, на промежутке -1 до 1 функция ниже оси Ох)
приравняв к нулю икс, получим игрик равный -1
4)найдем ассимптоты, так как точек разрыва нет, то и вертикальных ассимптот нет, найдем наклонную асимптоту, для этого вычислим предел
стремится к бесконечности, а значит ассимптот нет
5)Исследуем точки экстремума и интервалы монотонности, тогда найдем производную
4x³ и приравняем ее к нулю 4x³=0, откуда x=0. Найдем знаки слева и справа от нуля, слева минус справа плюс, значит слева от нуля функция убывает, а справа возрастает. Т.к. 0 принадлежит области определения функция, то подставим его в изначальное уравнение, получим -1. Точка (0,-1) - точка экстремума, т.к. в этой точке производная меняет знак с минуса на плюс, то это точка минимума
6) найдем точки перегиба. Для этого найдем вторую производную - производную от производной = 12x^2. приравняем к нулю и вновь получим 0, найдем знаки слева и справа, с обеих сторон +, значит функция выпукла вниз на всей области определения, и точка 0 не является точкой перегиба
7) нужно построить график по всем значениям которые мы получили