Уравнение заданной функции - дробь, в знаменателе - корень второй степени. Отсюда 2 ограничения: - знаменатель не должен быть равен 0, - подкоренное выражение должно быть не отрицательным.
Находим нули подкоренного выражения: 4 - 3х - х² = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-3)^2-4*(-1)*4=9-4*(-1)*4=9-(-4)*4=9-(-4*4)=9-(-16)=9+16=25; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√25-(-3))/(2*(-1))=(5-(-3))/(2*(-1))=(5+3)/(2*(-1))=8/(2*(-1))=8/(-2)=-8/2=-4; x_2=(-√25-(-3))/(2*(-1))=(-5-(-3))/(2*(-1))=(-5+3)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1. ответ: -4 < x < 1.
Отсюда 2 ограничения:
- знаменатель не должен быть равен 0,
- подкоренное выражение должно быть не отрицательным.
Находим нули подкоренного выражения:
4 - 3х - х² = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-3)^2-4*(-1)*4=9-4*(-1)*4=9-(-4)*4=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√25-(-3))/(2*(-1))=(5-(-3))/(2*(-1))=(5+3)/(2*(-1))=8/(2*(-1))=8/(-2)=-8/2=-4;
x_2=(-√25-(-3))/(2*(-1))=(-5-(-3))/(2*(-1))=(-5+3)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1.
ответ: -4 < x < 1.
Объяснение:
1)
a) x² - 6x + 5 = 0;
D = 16;
X1 = 5;
X2 = 1;
ответ: 5, 1
б) x² - 5x = 0;
x (x - 5) = 0;
X = 0 или x = 5;
ответ: 0, 5
в) 6x + x²- 7 = 0
x² + 6x - 7 = 0
D=6²-4*1*7=36-28=√8=2√2
x1 = -2√2
x2 = -4√2
ответ: -2√2, -4√2
г) 3x² - 48 = 0
3 (x² - 16) = 0
(x - 4) (x + 4) = 0
x1 = 4
x2 = -4
ответ: 4, -4
2)
S = x (x - 6) = 40
x² - 6x - 40=0
D = 36 + 160 = 196 = 14²
x₁ = (6 + 14) / 2 = 10
x₂ = (6 - 14) / 2 = -4
Длина = 10
Ширина = 10 - 6 = 4
3)
х² + рх - 18 = 0
81 - 9p - 18 = 0
-9p = -63
p = 7
x² + 7x - 18 = 0
x₁ = -9 x₂ = 2
4)
х1 + х2 = -b;
x1 * x2 = c
9 - 4 = 5 b = -5
9 * (-4) = 36 c = -36
х² - 5х - 36 = 0