1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/7, а степень одночлена - это сумма степеней переменных, в данном примере 5+2, значит, 7.
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
В решении.
Объяснение:
1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/7, а степень одночлена - это сумма степеней переменных, в данном примере 5+2, значит, 7.
Определить коэффициент и степень одночлена:
3/7 х⁵у² = 3/7 и 7.
2) 3ху²+8х-7у+4ху²+2ху²+3х=
=9ху²+11х-7у.
3) аz²+bz²-bz-az+a+b=
=(аz²+bz²)-(bz+az)+(a+b)=
=z²(a+b)-z(a+b)+(a+b)=
=(a+b)(z²-z+1).
4) 3,4*10⁹ * 1200=
=3,4*10⁹ * 1,2*10³=
=3,4*1,2*10¹²=
=4,08 * 10¹².
5) Вычислить:
(1/3)⁻¹ - (-6/7)⁰ + (1/2)² : 2=
=1 : (1/3) - 1 + 1/4 : 2=
=3 - 1 + 1/8=
=2 + 1/8= 2 и 1/8.
6) В 4 раза.
Р=4а
S=а²
Если S=16а², а=4а, Р=4*4а=16а
16а:4а=4 (раза).
ответ
4,0/5
133
sergeevaolga5
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение: