1) 90+70 = 160 (м/мин) - скорость сближения пешеходов 2) 16 км = 16 000 м - расстояние между А и В 3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м 4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м 5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов 6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м 7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5
2) 16 км = 16 000 м - расстояние между А и В
3) 16 000 - 800 = 15 200 (м) - пройдут пешеходы вместе, пока между ними не останется расстояние 800 м
4) 15200: 160 = 95 (мин)=1 ч 35 мин - время движения пешеходов до момента, когда расстояние между ними останется 800 м
5) 16 000:160 = 100 (мин)=1 ч 40 мин - время до встречи пешеходов
6) 9 ч + 1 ч 35 мин = 10 ч 35 мин - столько времени будет на часах, когда между пешеходами останется 800 м
7) 9 ч + 1 ч 40 мин = 10 ч 40 мин - время встречи пешеходов
Итак, в течение времени с 10:36 до 10:40 расстояние между пешеходами будет менее 800 м.