Сначала всё обозначим: ширина бассейна по условию х; длина бассейна х+6; ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки); длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки). Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию: (x+7) *(x+1) - (x+6) * x = 15 x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
Обозначаем скорость первого автомобиля за х км/ч, тогда скорость второго автомобиля (х-20) км/ч. Первый автомобиль проедет расстояние между городами за 420/х часов, второй за 420/(x-20) часов. Получаем уравнение (переводя 24 минуты в 2/5 часа) : 420/(x-20)-420/x=2 2/5 Домножаем обе части уравнения на общий знаменатель х*(х-20)*5: 2100*х-2100*(х-20)=12*х*(х-20) Умножаем обе части уравнения на 1/12 (для упрощения вычислений! ) и открываем скобки: 175*х-175*х+3500=x^2-20*x Приводим подобные и переносим все части уравнения влево, после чего умножаем обе части уравнения на -1. Получаем квадратное уравнение: x^2-20*x-3500=0 Решаем приведенное квадратное уравнение вида x^2+px+q=0: x1,2=10+/-sqrt(100+3500)=10+/-60 x1=70 (км/ч) х2=-50 посторонний корень, не имеющий физического смысла, скорость автомобиля не может быть в данном случае ОТРИЦАТЕЛЬНОЙ. Проверка: Первый автомобиль проедет расстояние за 420/70=6 часов, второй за 420/(70-20)=8 2/5 часа. Первый автомобиль приедет на 8 2/5-6=2 2/5 часа=2 часа 24 минуты раньше второго, что совпадает с условием задачи. ответ: Скорость первого автомобиля 70 километров в час.
ширина бассейна по условию х;
длина бассейна х+6;
ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15
x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
420/(x-20)-420/x=2 2/5
Домножаем обе части уравнения на общий знаменатель х*(х-20)*5:
2100*х-2100*(х-20)=12*х*(х-20)
Умножаем обе части уравнения на 1/12 (для упрощения вычислений! ) и открываем скобки:
175*х-175*х+3500=x^2-20*x
Приводим подобные и переносим все части уравнения влево, после чего умножаем обе части уравнения на -1. Получаем квадратное уравнение:
x^2-20*x-3500=0
Решаем приведенное квадратное уравнение вида x^2+px+q=0:
x1,2=10+/-sqrt(100+3500)=10+/-60
x1=70 (км/ч)
х2=-50 посторонний корень, не имеющий физического смысла, скорость автомобиля не может быть в данном случае ОТРИЦАТЕЛЬНОЙ.
Проверка: Первый автомобиль проедет расстояние за 420/70=6 часов, второй за 420/(70-20)=8 2/5 часа. Первый автомобиль приедет на 8 2/5-6=2 2/5 часа=2 часа 24 минуты раньше второго, что совпадает с условием задачи.
ответ: Скорость первого автомобиля 70 километров в час.