Пусть скорость первого пешехода - хскорость второго пешехода - увремя в пути обоих пешеходов 3ч 45 мин= 3,75чтогда первый пешеход успеет пройти расстояние 3,75х ,а второй 3,75 утогда 3,75 х+3,75у=30- первое уравнение Если первый выйдет на 2 часа раньше и будет идти ещё 2,5 часа то он успеет пройти расстояние 4,5х ,а второй выходит позднее и пройдёт 2.5 у Значит 4,5х+2,5у=30 второе уравнение системы Пусть скорость первого пешехода - хскорость второго пешехода - увремя в пути обоих пешеходов 3ч 45 мин= 3,75чтогда первый пешеход успеет пройти расстояние 3,75х ,а второй 3,75 утогда 3,75 х+3,75у=30- первое уравнение Если первый выйдет на 2 часа раньше и будет идти ещё 2,5 часа то он успеет пройти расстояние 4,5х ,а второй выходит позднее и пройдёт 2.5 у Значит 4,5x+2,5 у=30 второе уравнение системы
3,75x+3,75y=30 4,5x+2,5y=30 Первое уравнение умножить на 2,второе на (-3)получаем
7,5x+7,5y=60 -13,5x-7,5y=-90 Используем метод сложения и получаем-6х=-30х=-30:(-6)х=5 км/ч-скорость первого пешеходаПодставляем во второе уравнение системы4,5*5+2,5у=3022,5+2,5у=302,5у=30-22,52,5у=7,5у=7,5:2,5у=3 км/ч-скорость второго пешеходаответ 5 км/ч и 3 км/ч
График линейной функции строится на системе координат. Линейная функция-это прямая, которая обычно дается в виде формулы: y=kx+m где x- независимая переменная, её обычно называют аргумент, а y-функция, k и m-некоторые числа. Например: (y=kx+m) y=2x+5. Так как здесь выражена переменная y (y=...) мы можем взять и придумать любую переменную x. Например 2, 3, 0, 5 и т.д. но так как графики у нас не на всю страницу, берем то, что удобнее (чем меньше, тем лучше) Пример: мы "придумали" что у нас переменная x будет 0. подставляем ее в линейную функцию. Получается: y=2*0+5. так как если мы что-то умножаем на 0 получится 0, мы смотрим: y=5. то есть: 5=2*0+5. так как решением линейной функции всегда являются две каких-либо точки, мы так и записываем: (0;5) Это ПЕРВАЯ точка. Для решения функции нам нужны две точки, и мы делаем тоже самое, только берем, естесственно, уже другой x. запишу кратко, как у нас вышла первая точка: y=2x+5 (мы подставляли: x=0) y=2*0+5 y=5 ответ: (0;5) Находим вторую точку, снова "придумываем" x Например: x=1. Подставляем: y=2x+5 y=2*1+5 y=7 ответ: (1;7) У нас есть две точки: (0;5) и (1;7), отмечаем их на графике, и проводим ПРЯМУЮ. то есть, на графике мы должны это показать(немного заходим за точки) Это-график линейной функции
Пусть скорость первого пешехода - хскорость второго пешехода - увремя в пути обоих пешеходов 3ч 45 мин= 3,75чтогда первый пешеход успеет пройти расстояние 3,75х ,а второй 3,75 утогда 3,75 х+3,75у=30- первое уравнение Если первый выйдет на 2 часа раньше и будет идти ещё 2,5 часа то он успеет пройти расстояние 4,5х ,а второй выходит позднее и пройдёт 2.5 у Значит 4,5x+2,5 у=30 второе уравнение системы
3,75x+3,75y=30
4,5x+2,5y=30 Первое уравнение умножить на 2,второе на (-3)получаем
7,5x+7,5y=60
-13,5x-7,5y=-90
Используем метод сложения и получаем-6х=-30х=-30:(-6)х=5 км/ч-скорость первого пешеходаПодставляем во второе уравнение системы4,5*5+2,5у=3022,5+2,5у=302,5у=30-22,52,5у=7,5у=7,5:2,5у=3 км/ч-скорость второго пешеходаответ 5 км/ч и 3 км/ч
y=kx+m
где x- независимая переменная, её обычно называют аргумент, а y-функция, k и m-некоторые числа.
Например:
(y=kx+m) y=2x+5.
Так как здесь выражена переменная y (y=...) мы можем взять и придумать любую переменную x. Например 2, 3, 0, 5 и т.д. но так как графики у нас не на всю страницу, берем то, что удобнее (чем меньше, тем лучше)
Пример: мы "придумали" что у нас переменная x будет 0. подставляем ее в линейную функцию. Получается:
y=2*0+5. так как если мы что-то умножаем на 0 получится 0, мы смотрим: y=5. то есть: 5=2*0+5. так как решением линейной функции всегда являются две каких-либо точки, мы так и записываем: (0;5)
Это ПЕРВАЯ точка. Для решения функции нам нужны две точки, и мы делаем тоже самое, только берем, естесственно, уже другой x. запишу кратко, как у нас вышла первая точка:
y=2x+5 (мы подставляли: x=0)
y=2*0+5
y=5
ответ: (0;5)
Находим вторую точку, снова "придумываем" x Например: x=1. Подставляем:
y=2x+5
y=2*1+5
y=7
ответ: (1;7)
У нас есть две точки: (0;5) и (1;7), отмечаем их на графике, и проводим ПРЯМУЮ. то есть, на графике мы должны это показать(немного заходим за точки)
Это-график линейной функции