Поскольку кубик имеет 6 граней, при броске каждого кубика есть шесть возможных вариантов выпадения очков. если бросать два кубика одновременно, то количество разных вариантов выпадения очков на двух кубиках будет равно 6*6 = 36. теперь нам необходимо определить, какое количество вариантов соответствует случаю, когда сумма выпавших на двух кубиков очков будет равна 6. переберем все такие возможности: 1) 1 кубик - 1, 2 кубик - 5; 2) 1 кубик - 2, 2 кубик - 4; 3) 1 кубик - 3, 2 кубик - 3; 4) 1 кубик - 4, 2 кубик - 2; 5) 1 кубик - 5, 2 кубик - 1. всего таких вариантов 5, а общее число вариантов выпадения очков на двух кубиках равно 36, следовательно, вероятность того что при броске двух кубиков сумма выпавших очков будет равна 6 составит 5/36. ответ: искомая вероятность 5/36
Объяснение:
1)у=х²-9
х²-9=0
х²=9
х₁,₂=±√9
х₁,₂=±3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3
у 7 0 -5 -8 -9 -8 -5 0
Смотрим на график и полученные значения х₁ -3 и х₂=3.
Вывод: у>=0 при х∈(-∞, -3]∪[3, ∞)
(у больше нуля при х от - бесконечности до -3 и от 3
до + бесконечности)
(у=0 при х= -3; при х=3)
2)у=2x²-6
2x²-6=0
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 12 2 -4 -6 -4 2 12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Вывод: у>=0 при х∈(-∞, -√3]∪[√3, ∞)
(у больше нуля от - бесконечности до -1,7 и от 1,7 до
+ бесконечности)
(у=0 при х= -√3; х=√3)
3)у=5-х²
у= -х²+5
-х²+5=0
х²-5 =0
х²=5
х=±√5 (≈2,2)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у -11 -4 1 4 5 4 1 -4 -11
Смотрим на график и полученные значения х₁= -√5 и х₂=√5.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√5, √5]
(у больше нуля от -2,2 до 2,2)
(у=0 при х= -√5; х=√5)
4)y=6-2x²
y= -2x²+6
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у -12 -2 4 6 4 -2 -12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√3, √3]
(у больше нуля от -1,7 до 1,7)
(у=0 при х= -√3; х=√3)