Представьте в виде степени произведение: 1) а)c5c4 б)aa7 в)x3x3 г)yy2y3 д)a6a3a
2)Представьте в виде степени частое:
а)x8:x4 б)c6:c в)(-15) 16:(-15)8
3) Используя правила умножения и деления степей упростите выражение:
a)y2y8:y б)x5:x2:x2 в)a15:a5 a2
4)Возведите в степень произведение:
a) (ab)9 б)(xyz)7 в) (2ac)4 г) (-3xy)3
y'(x) = - 4 sin x + 27/π;
y;(x) = 0;
- 4 sin x + 27/π = 0;
- 4 sin x = - 27/π;
sin x = 27/4π;
π≈3,14;
27/4π≈27/12,48 >1;
-1 ≤ sin x ≤ 1; нет решений, то есть нет стационарных точек.
Проверим значения функции на концах заданного интервала.
f(- 2π/3) = 4 cos(-2π/3 ) + 27 (-2π/3) / π + 3=
=4*(-1/2) - 18 + 3= - 17.
f(0) = 4 cos 0 - 27*0/π + 3 = 4*1 - 0 + 3 = 7;
f(0) > f(- 2π/3);
ответ : f(наим.)=f(- 2π/3)= - 17.
2) y = 5 sin x - 36x /π + 6;
y'(x)= 5 cos x - 36/π;
y;(x) = 0;
5 cos x - 36/π=0;
5 cos x = 36/π;
cos x = 36 / 5π≈2,2;
- 1 ≤ cos x ≤ 1; нет решений, то есть нет стационарных точек.
Проверим значения функции на концах заданного интервала.
f(- 5π/6) = 5*sin(- 5π/6) - 36(-5π/6)+6 =5*(-1/2)+ 30+6=
=33,5.
f(0) = 5 sin 0 - 36*0/π + 6 = 5*0 - 0 + 6 = 6.
f(0) < f(- 5π/6) ;
f(наиб.) = f(- 5π/6)= 33,5
Войти
АнонимМатематика12 марта 23:52
Разложите на множители квадратный трехчлен x^2-5x+4
ответ или решение1
Романов Василий
Для того, чтобы разложить на множители квадратный трехчлен x2 - 5x + 4 приравняем к нулю его и решим полученное полное квадратное уравнение:
x2 - 5x + 4 = 0;
Ищем дискриминант по формуле:
D = b2 - 4ac = (-5)2 - 4 * 1 * 4 = 25 - 16 = 9;
Ищем корни по формулам:
x1 = (-b + √D)/2a = (5 + √9)/2 = (5 + 3)/2 = 8/2 = 4;
x2 = (-b - √D)/2a = (5 - √9)/2 = (5 - 3)/2 = 2/2 = 1.
Для разложения на множители применим формулу:
ax2 + bx + c = a(x - x1)(x - x2).
x2 - 5x + 4 = (x - 4)(x - 1).
ответ: (x - 4)(x - 1).