В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
valeriaky0707
valeriaky0707
08.01.2023 10:13 •  Алгебра

. Представьте в виде вариационного ряда, ряд чисел 3; 5; 1; 6; 1; 3; 3; 5; 7; 6; 2; 3; 5; 2; 5; 2; 1; 7; 4; 1. Представьте данные в виде таблицы, запишите варианты, абсолютную частоту варианты и относительную частоту варианты.

Показать ответ
Ответ:
незнайка3431
незнайка3431
14.10.2021 01:08
Решение
a)  Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
 из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ 
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ 
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε. 
 По определению это и означает, что lim x→ −2  (3x - 2) = −2
0,0(0 оценок)
Ответ:
Yulia14929
Yulia14929
03.10.2021 01:04

y = log₂(-x² + 4x + 5) + 2


ОДЗ : -x² + 4x + 5 > 0

-(x² - 4x - 5) > 0   ⇔   x² - 4x - 5 < 0   ⇔

(x - 5)(x + 1) < 0

Метод интервалов

+++++++ (-1) -------- (5) ++++++++ >>> x

ОДЗ : x ∈ (-1; 5)


y = log₂(-x² + 4x + 5) + 2 = log₂(-x² + 4x + 5) + log₂4 =

= log₂ ( ( -x² + 4x + 5) * 4) = log₂( -4x² + 16x + 20)


y = log₂( -4x² + 16x + 20) - логарифмическая функция с основанием 2 > 1

⇒ большему значению аргумента соответствует большее значение функции, т.е. достаточно найти наибольшее значение выражения под логарифмом, чтобы найти максимум логарифмической функции.


f(x) = -4x² + 16x + 20 - квадратичная функция.

График - квадратичная парабола, ветви направлены вниз.

Точка максимума - вершина параболы

Координата вершины параболы

x_0=-\frac{b}{2a} =-\frac{16}{2*(-4)} =2

x₀ = 2 ∈ ОДЗ ⇒

x₀ = 2 - точка максимума функции y = log₂(-x² + 4x + 5) + 2

Максимальное значение функции :

y(2) = log₂(-2² + 4*2 + 5) + 2 = log₂9 + 2 = 2( log₂3 + 1)


ответ: точка максимума х₀ = 2

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота