Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
φ = ±arccos(√2 / 2) + 2пk, kЄZ
φ = ±п/4 + 2пk, kЄZ
-4п<=φ<=0 (по условию)
-4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0
-9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4
-9/8<=k<=-1/8 -7/8<=k<=1/8
k=1 k=0
Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
φ = п/4 + 2п*1, kЄZ φ = -п/4 + 2п*0, kЄZ
φ = 9п/4, kЄZ φ = -п/4, kЄZ
Получили 2 значения угла с учетом промежутка, заданного условием.
Удачи!
График расположен выше оси ОХ.
Точки пересечения с осью ОХ: .
Графики функций - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.