Представьте выражение (0,3а^2-0,2)^3 в виде многочлена, используя формулу сокращённого умножения. Отметьте верный ответ.
а) 0,027а^6-0,054а^4+0,036а^2-0,008
б) 0,027а^6-0,054а^4-0,036а^2-0,008
в) 0,027а^6+0,054а^4-0,036а^2+0,008
г) 0,027а^6-0,054а^4+0,036а^2-0,008
Подкоренное выражение 7х - х² должно быть положительным или равным нулю, потому что извлекать квадратный корень из отрицательного числа нельзя.
7х - х² ≥ 0.
Решим неравенство методом интервалов. Найдем нули функции.
7х - х² = 0.
Вынесем за скобку общий множитель х.
х(7 - х) = 0.
Произведение двух множителей равно нулю тогда, когда один из множителей равен нулю.
1) х = 0;
2) 7 - х = 0;
х = 7.
Отметим на числовой прямой точки 0 и 7.
Эти числа делят числовую прямую на интервалы 1) (-∞; 0], 2) [0; 7], 3) [7; +∞).
Выясним, на каком из интервалов выражение 7х - х² будет принимать положительные значения. На 1 и 3 интервалах это выражение отрицательно, на 2 итервале - положительно. Поэтому, значения х, принадлежащие 2 интервалу являются областью определения функции.
ответ. [0; 7].
Решить уравнение
25*sin(x)cos(x)-sin(x)-cos(x)=5 ;
25*( ( sin(x) +cos(x) )² - 1) /2 - ( sin(x) +cos(x) =5 ;
замена: t = sin(x) +cos(x) = √2cos(x -π/4) ; -√2 ≤ √2cos(x -π/4) ≤ √2
25(t² -1)/2 - t =5 ;
25t² -2t -35 =0 ; D₁ =(2/2)² - 25*(-35) =1 +875 =876 =(2√219)²
t₁ = (1 -2√219) / 25 ;
t₂ = (1+2√219) / 25 .
* * * t₁ и t₂ ∈ [ - √2 ; √2] * * *
a)
√2cos(x -π/4) = (1 -2√219) / 25 ;
cos(x -π/4) = √2(1 -2√219) / 50
x -π/4 = ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
x = π/ 4 ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
б)
√2cos(x -π/4) = (1 +2√219) / 25;
x = π/ 4 ± arccos (√2(1 +2√219) / 50) +2πn , n ∈ Z .√2