ответ: 0,02332 га = 2,332*10⁻² га
объяснение:
стандартный вид числа где ∈ (n-порядковый номер числа u)
1)
3,81*106 л = 403,86 л
1 л = 1 дм³
1 м³ = 1000 дм³
403,86 л = 403,86 дм³ = 0,40386 м³
0,40386 м³ = 4,0386 * 10⁻¹ м³
2)
54*105 км/ч = 5670 км/ч
1 км = 1000м
1 ч = 3600 с
5670 км/ч = (5670*1000 м)/3600 с = 1575 м/с
1575 м/с = 1,575 * 10³ м/с
3)
2,3*108 м² = 248,4 м²
1 га = 10000 м²
248,4 м² = 0,02484 га
0,02484 га = 2,484*10⁻² га
4)
3,21*106 л = 340,26 л
340,26 л = 340,26 дм³ = 0,34026 м³
0,34026 м³ = 3,4026 * 10⁻¹ м³
5)
72*103 км/ч = 7416 км/ч
7416 км/ч = (7416*1000 м)/3600 с = 2060 м/с
2060 м/с = 2,06 * 10³ м/с
6)
2,2*106 м² = 233,2 м²
233,2 м² = 0,02332 га
0,02332 га = 2,332*10⁻² га
Площадь многоугольника существует.
2. Каждому многоугольнику можно поставить в соответствие некоторое положительное число (площадь) так, что выполняются следующие условия:
- Равные многоугольники имеют равные площади
- Если многоугольник составлен из двух многоугольников, не имеющих общих внутренних точек, то его площадь равна сумме площадей этих многоугольников.
- Площадь квадрата со стороной, равной единице длины, равна одной единице измерения площади.
Формулы площади треугольника.
1) Площадь треугольника равна половине произведения основания на высоту.
2) Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
3) Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.
4) Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности.
5) Формула Герона.  где р - полупериметр треугольника р=(а+b+c)/2
Формулы площади параллелограмма.
1) Площадь параллелограмма равна произведению основания на высоту.
2) Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
3) Площадь прямоугольника равна произведению двух его соседних сторон.
4) Площадь ромба равна половине произведения его диагоналей.
Площадь трапеции равна произведению полусуммы оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности.
Если M — точка на стороне BC треугольника ABC, то
S(AMB)/S(AMC) = BM/CM.
Если P и Q — точки на сторонах AB и AC (или на их продолжениях) треугольника ABC, то
S(APQ)/S(ABC)= (AP/AB) · (AQ/AC)
Площадь круга радиуса R равна πR²
ответ: 0,02332 га = 2,332*10⁻² га
объяснение:
стандартный вид числа где ∈ (n-порядковый номер числа u)
1)
3,81*106 л = 403,86 л
1 л = 1 дм³
1 м³ = 1000 дм³
403,86 л = 403,86 дм³ = 0,40386 м³
0,40386 м³ = 4,0386 * 10⁻¹ м³
2)
54*105 км/ч = 5670 км/ч
1 км = 1000м
1 ч = 3600 с
5670 км/ч = (5670*1000 м)/3600 с = 1575 м/с
1575 м/с = 1,575 * 10³ м/с
3)
2,3*108 м² = 248,4 м²
1 га = 10000 м²
248,4 м² = 0,02484 га
0,02484 га = 2,484*10⁻² га
4)
3,21*106 л = 340,26 л
1 л = 1 дм³
1 м³ = 1000 дм³
340,26 л = 340,26 дм³ = 0,34026 м³
0,34026 м³ = 3,4026 * 10⁻¹ м³
5)
72*103 км/ч = 7416 км/ч
1 км = 1000м
1 ч = 3600 с
7416 км/ч = (7416*1000 м)/3600 с = 2060 м/с
2060 м/с = 2,06 * 10³ м/с
6)
2,2*106 м² = 233,2 м²
1 га = 10000 м²
233,2 м² = 0,02332 га
0,02332 га = 2,332*10⁻² га
Площадь многоугольника существует.
2. Каждому многоугольнику можно поставить в соответствие некоторое положительное число (площадь) так, что выполняются следующие условия:
- Равные многоугольники имеют равные площади
- Если многоугольник составлен из двух многоугольников, не имеющих общих внутренних точек, то его площадь равна сумме площадей этих многоугольников.
- Площадь квадрата со стороной, равной единице длины, равна одной единице измерения площади.
Формулы площади треугольника.
1) Площадь треугольника равна половине произведения основания на высоту.
2) Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
3) Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.
4) Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности.
5) Формула Герона.  где р - полупериметр треугольника р=(а+b+c)/2
Формулы площади параллелограмма.
1) Площадь параллелограмма равна произведению основания на высоту.
2) Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
3) Площадь прямоугольника равна произведению двух его соседних сторон.
4) Площадь ромба равна половине произведения его диагоналей.
Площадь трапеции равна произведению полусуммы оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности.
Если M — точка на стороне BC треугольника ABC, то
S(AMB)/S(AMC) = BM/CM.
Если P и Q — точки на сторонах AB и AC (или на их продолжениях) треугольника ABC, то
S(APQ)/S(ABC)= (AP/AB) · (AQ/AC)
Площадь круга радиуса R равна πR²