Дан прямоугольный треугольник. Площадь треугольника равна половине произведения высоты на длину стороны, проведенную к этой стороне(0,5*a*h). В нашем чертеже это будет выглядеть, как: 1/2*AC*BC. Чтобы найти сторону АС воспользуемся теоремой Пифагора. По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов треугольника. Катеты - стороны, образующие прямой угол (АС, ВС). Гипотенуза - АВ. Составим уравнение: AB^2=AC^2+BC^2. AC=√(AB^2-BC^2). АС=√(400-256) АС=√144 АС=12. Найдем площадь S=1/2*12*16=96. ответ: 96 сантиметров
0.12∗
6
1
=
100
12
∗
6
1
=
6∗100
12∗1
=
1∗100
2∗1
=
50
1
=0.02
2.1*\frac{3}{7}=\frac{21}{10}*\frac{3}{7}=\frac{21*3}{10*7}=\frac{3*3}{10*1}=\frac{9}{10}=0.92.1∗
7
3
=
10
21
∗
7
3
=
10∗7
21∗3
=
10∗1
3∗3
=
10
9
=0.9
3\frac{3}{4}*0.4=\frac{3*4+3}{4}*\frac{4}{10}=\frac{15}{4}*\frac{2}{5}=\frac{15*2}{4*5}=\frac{3*1}{2*1}=\frac{3}{2}=1.53
4
3
∗0.4=
4
3∗4+3
∗
10
4
=
4
15
∗
5
2
=
4∗5
15∗2
=
2∗1
3∗1
=
2
3
=1.5
\frac{1}{5}*4.85=\frac{1}{5}*\frac{485}{100}=\frac{1*485}{5*100}=\frac{1*97}{1*100}=\frac{97}{100}=0.97
5
1
∗4.85=
5
1
∗
100
485
=
5∗100
1∗485
=
1∗100
1∗97
=
100
97
=0.97
В нашем чертеже это будет выглядеть, как:
1/2*AC*BC.
Чтобы найти сторону АС воспользуемся теоремой Пифагора.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов треугольника.
Катеты - стороны, образующие прямой угол (АС, ВС). Гипотенуза - АВ.
Составим уравнение:
AB^2=AC^2+BC^2.
AC=√(AB^2-BC^2).
АС=√(400-256)
АС=√144
АС=12.
Найдем площадь
S=1/2*12*16=96.
ответ: 96 сантиметров