У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
Приравняем выражения под модулями к нулю, чтобы найти граничные значения x
1) x + 3 = 0
x = -3
2) 2 - x = 0
x = 2
Рассмотрим три промежутка значений x:
1) x ∈ (-∞; -3]
2) x ∈ (-3; 2]
3) x ∈ (2; +∞)
1) x ∈ (-∞; -3]
-(x + 3) - (2 - x) ≥ 5x - 3
-x - 3 - 2 + x ≥ 5x - 3
-2 ≥ 5x
5x ≤ -2
x ≤ -0,4
x ∈ (-∞; -3]
2) x ∈ (-3; 2]
(x + 3) - (2 - x) ≥ 5x - 3
x + 3 - 2 + x ≥ 5x - 3
2x + 1 ≥ 5x - 3
3x ≤ 4
x ≤ 4/3
x ≤ 1+1/3
x ∈ (-3; 1+1/3]
3) x ∈ (2; +∞)
(x + 3) + (2 - x) ≥ 5x - 3
x + 3 + 2 - x ≥ 5x - 3
5 ≥ 5x - 3
5x ≤ 8
x ≤ 1,6
x ∈ ∅
Объединяем все решения
ответ: x ∈ (-∞; 1+1/3]
Обозначим второе число (дата), как
тогда неизвестное число должно выглядеть, как:
и должно выполняться равенство:
или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго
и приходящая в третий разряд:
– возможная добавочная единица,
уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц
расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант:
здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г.
– дата 15/04/86 г.
– дата 21/04/47 г.
– дата 24/04/77 г.
– дата 24/04/38 г.
------------------
Рассмотрим второй вариант:
здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
;
Возможен только один случай:
;
Учитывая, что:
получаем разностное число:
– дата 11/15/46 г.
продолжение >>>