Для решения применим правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Фигура первая - большой круг с радиусом 2 см, площадь которого равна πR² = π*2²=4π (см²)
Фигура вторая - маленький круг с радиусом 1 см, площадь которого равна πr² =π*1² =π (см²)
Событие А - "точка В попадет в маленький круг радиуса 1 см, находящийся внутри большого круга радиусом 2 см".
По правилу нахождения геометрической вероятности получаем вероятность попадания точки В в маленький круг радиуса 1 см:
Р(А) = π:4π = 1/4=0,25
Вероятность того, что точка В не попадёт в маленький круг радиуса 1 см, находящийся внутри большого круга радиуса 2 см, равна вероятности противоположного события событию А, т.е.
Р = 1-Р(А) = 1-0,25 = 0,75
*** Для решения использованы формула площади круга с радиусом R:
Песни: Катюша, калинка, миллион алых роз.
Романы: Большие надежды, Ромео и Джульетта, Госпожа Бовари.
: Александр Пушкин — , Андрей Дементьев — о матери, Владимир Высоцкий — о Любви.
Сюита: Аллеманда (allemande) как танец известна с начала XVI века. ...
Куранта (courante) — оживленный танец в трехдольном размере. ...
Сарабанда (sarabande) — очень медленный танец. ...
Жига (gigue) — самый быстрый старинный танец.
Симфония: Моцарт. Симфония № 41 «Юпитер», до мажор I. ...
Бетховен. Симфония № 3, ми-бемоль мажор, соч. ...
Шуберт. Симфония № 8 си минор (так называемая «Неоконченная») .
Опера: 1 Волшебная флейта Вольфганг Амадей Моцарт
2 Травиата Джузеппе Верди
3 Кармен Жорж Бизе
Балет: Дон Кихот» Сцена из балета «Дон-Кихот». ...
«Лебединое Озеро» Сцена из балета «Лебединое озеро» П.И. ...
«Щелкунчик» Сцена из балета «Щелкунчик».
Мюзикл: Звуки музыки". ...
"Кабаре". ...
"Иисус Христос - суперзвезда". ...
"Чикаго".
0,75
Объяснение:
Для решения применим правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Фигура первая - большой круг с радиусом 2 см, площадь которого равна πR² = π*2²=4π (см²)
Фигура вторая - маленький круг с радиусом 1 см, площадь которого равна πr² =π*1² =π (см²)
Событие А - "точка В попадет в маленький круг радиуса 1 см, находящийся внутри большого круга радиусом 2 см".
По правилу нахождения геометрической вероятности получаем вероятность попадания точки В в маленький круг радиуса 1 см:
Р(А) = π:4π = 1/4=0,25
Вероятность того, что точка В не попадёт в маленький круг радиуса 1 см, находящийся внутри большого круга радиуса 2 см, равна вероятности противоположного события событию А, т.е.
Р = 1-Р(А) = 1-0,25 = 0,75
*** Для решения использованы формула площади круга с радиусом R:
Sкр. = πR²