Преобразуйте уравнение x = 3 - 7х=4х(х - 9) к виду ах² + bx + c = 0 и укажите старший коэффициент второй коэффициент и свободный член этого уравнения.
X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
придётся немного поработать с «подбором»:
пусть сначала было k коробок, потом n, затем m.
тогда: 6k = 9n + 6,
а также
6k = 7m + 3.
или:
9n + 6 = 7m + 3.
выразим отсюда: n = (7m – 3)/9.
но n (равно как и k и m) должно быть целым. подбираем варианты:
m = 3 => n = 2; (m увеличиваем в каждом шаге на 9)
m = 12 => n = 9; k = 1,5n + 1 = 14,5.
m = 21 => n = 16; k = 24 + 1 = 25.
m = 30 => n = 23; k = 34,5.
m = 39 => n = 30; k = 45 + 1 = 46.
при k = 25 имеем: 6k = 150, это < 200.
при k = 46 получаем: 6k = 276.
то число подарков «подходит» под условие .
проверяем: 306 = 9•30 + 6 =276; 306 = 7•39 +3 = 276.
итак, число подарков было