При каком положительным значении параметра p один из корней квадратного уравнения x^2 -px +48=0 в 3 раза больше другого?
Пусть корни будут х1 и х2 . Если мы подставим их в уравнение, то получим верные равенства
х1^2 - p*x1 +48 = 0
х2^2 - p*x2 +48 = 0
x1= 3 x2 - это дано по условию
Подучилась система из трех уравнений с тремя неизвестными. Решаем его
(3 х2)^2 - 3p*x2 +48 = 0 9 х2^2 - 3p*x2 +48 = 0 9 х2^2 - 3p*x2 +48 = 0 х2^2 - p*x2 +48 = 0 х2^2 - p*x2 +48 = 0 *3 3х2^2 - 3p*x2 +144 = 0 x1= 3 x2 x1= 3 x2 x1= 3 x2
От первого уравнения отнимем второе
6 х2^2 -96 = 0 х2=16 х2= +/- 4
х2^2 - p*x2 +48 = 0 p*x2 = х2^2 +48 р = ( х2^2 +48 ) : х2
x1= 3 x2 x1= 3 x2 x1= 3 x2
р = (16+48) : -4=-16 или (16+48): 4=16
Но нас по условию интересует только положительное значение р = 16
а₈ = 0,4а₄а₈ + а₄ = 2,8S(n)=14,3 ; n=?
1. выражаем а₈ через а₄: а₈ = 2,8 - а₄2. приравниваем выражения и находим а₄:0,4а₄ = 2,8 - а₄1,4а₄ = 2,8а₄ = 23. тогда а₈ = 2,8 - 2 = 0,84. составляем и решаем систему, выразив а₈ и а₄ через формулу арифметической прогрессии:а₄ = а₁ + 3da₈ = a₁ + 7dчто в системе будет выглядеть кака₁ + 3d = 2a₁ + 7d = 0,8решаем систему:а₁ = 2 - 3d2 - 3d + 7d = 0,84d = -1,2d = -0,3а₁ = 2,95. находим n по формуле суммы членов арифметической прогрессии:14,3 = n(5,8 - 0,3(n-1)) / 2n(5,8 - 0,3(n-1)) = 28,66,1n - 0,3n² = 28,60,3n² - 6,1n + 28,6 = 0 | x103n² - 61n + 286 = 0D = 289n = (61 ± 17) / 6 = 13; 10,1(6)Так как целое n = 13, то 13 и будет нашим ответом.ответ: n = 13.
При каком положительным значении параметра p один из корней квадратного уравнения x^2 -px +48=0 в 3 раза больше другого?
Пусть корни будут х1 и х2 . Если мы подставим их в уравнение, то получим верные равенства
х1^2 - p*x1 +48 = 0
х2^2 - p*x2 +48 = 0
x1= 3 x2 - это дано по условию
Подучилась система из трех уравнений с тремя неизвестными. Решаем его
(3 х2)^2 - 3p*x2 +48 = 0 9 х2^2 - 3p*x2 +48 = 0 9 х2^2 - 3p*x2 +48 = 0
х2^2 - p*x2 +48 = 0 х2^2 - p*x2 +48 = 0 *3 3х2^2 - 3p*x2 +144 = 0
x1= 3 x2 x1= 3 x2 x1= 3 x2
От первого уравнения отнимем второе
6 х2^2 -96 = 0 х2=16 х2= +/- 4
х2^2 - p*x2 +48 = 0 p*x2 = х2^2 +48 р = ( х2^2 +48 ) : х2
x1= 3 x2 x1= 3 x2 x1= 3 x2
р = (16+48) : -4=-16 или (16+48): 4=16
Но нас по условию интересует только положительное значение р = 16
а₈ = 0,4а₄
а₈ + а₄ = 2,8
S(n)=14,3 ; n=?
1. выражаем а₈ через а₄:
а₈ = 2,8 - а₄
2. приравниваем выражения и находим а₄:
0,4а₄ = 2,8 - а₄
1,4а₄ = 2,8
а₄ = 2
3. тогда а₈ = 2,8 - 2 = 0,8
4. составляем и решаем систему, выразив а₈ и а₄ через формулу арифметической прогрессии:
а₄ = а₁ + 3d
a₈ = a₁ + 7d
что в системе будет выглядеть как
а₁ + 3d = 2
a₁ + 7d = 0,8
решаем систему:
а₁ = 2 - 3d
2 - 3d + 7d = 0,8
4d = -1,2
d = -0,3
а₁ = 2,9
5. находим n по формуле суммы членов арифметической прогрессии:
14,3 = n(5,8 - 0,3(n-1)) / 2
n(5,8 - 0,3(n-1)) = 28,6
6,1n - 0,3n² = 28,6
0,3n² - 6,1n + 28,6 = 0 | x10
3n² - 61n + 286 = 0
D = 289
n = (61 ± 17) / 6 = 13; 10,1(6)
Так как целое n = 13, то 13 и будет нашим ответом.
ответ: n = 13.