Преобразуйте в многочлен сумму многочлена x^4-x^2+1 и произведения многочленов 1-x^2 и x^2+1. Выберите правильный многочлен для преобразования: ___=___ ответ:
1) Разрешим наше дифференциальное уравнение относительно производной - уравнение с разделяющимися переменными Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3. Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным. Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену , тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4. Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное. Воспользуемся методом Эйлера Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение Пример 5. Аналогично с примером 4) Пусть , тогда получаем
1) 3(х - 1) - 2(3 - 7х) = 2(х - 2) 2) 10(1 - 2х) = 5(2х - 3) - 3(11х - 5)
3х - 3 - 6 + 14х = 2х - 4 10 - 20х = 10х - 15 - 33х + 15
3х + 14х - 2х = - 4 + 3 + 6 - 20х - 10х + 33х = - 15 + 15 - 10
15х = 5 3х = - 10
х = 5 : 15 х = - 10 : 3
х = 5/15 = 1/3 х = - 10/3 = - 3 1/3
3) 1,3(х - 0,7) - 0,12(х + 10) - 5х = - 9,75
1,3х - 0,91 - 0,12х - 1,2 - 5х = - 9,75
1,3х - 0,12х - 5х = - 9,75 + 0,91 + 1,2
- 3,82х = - 7,64
х = - 7,64 : (- 3,82)
х = 2
4) 2,5(0,2 + х) - 0,5(х - 0,7) - 0,2х = 0,5
0,5 + 2,5х - 0,5х + 0,35 - 0,2х = 0,5
2,5х - 0,5х - 0,2х = 0,5 - 0,5 - 0,35
1,8х = - 0,35
х = - 0,35 : 1,8
х = - 35/180 = - 7/36
Разрешим наше дифференциальное уравнение относительно производной
- уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3.
Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену
, тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4.
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение
Пример 5.
Аналогично с примером 4)
Пусть , тогда получаем
Общее решение:
Найдем производную функции
Подставим начальные условия
- частное решение