пример.рассмотрим следующую линейную функцию: y = 5x – 3.
1) d(y) = r;
2) e(y) = r;
3) функция общего вида;
4) непериодическая;
5) точки пересечения с осями координат:
ox: 5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.
oy: y = -3, следовательно (0; -3) – точка пересечения с осью ординат;
6) y = 5x – 3 – положительна при x из (3/5; +∞),
y = 5x – 3 – отрицательна при x из (-∞; 3/5);
7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.
в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).
если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.
смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.
смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.
свойства линейной функции:
1) область определения линейной функции есть вся вещественная ось;
2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;
3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.
a) b ≠ 0, k = 0, следовательно, y = b – четная;
b) b = 0, k ≠ 0, следовательно y = kx – нечетная;
c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;
d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.
4) свойством периодичности линейная функция не обладает;
5) точки пересечения с осями координат:
ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.
oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.
замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.
6) промежутки знакопостоянства зависят от коэффициента k.
a) k > 0; kx + b > 0, kx > -b, x > -b/k.
y = kx + b – положительна при x из (-b/k; +∞),
y = kx + b – отрицательна при x из (-∞; -b/k).
b) k < 0; kx + b < 0, kx < -b, x < -b/k.
y = kx + b – положительна при x из (-∞; -b/k),
y = kx + b – отрицательна при x из (-b/k; +∞).
c) k = 0, b > 0; y = kx + b положительна на всей области определения,
k = 0, b < 0; y = kx + b отрицательна на всей области определения.
7) промежутки монотонности линейной функции зависят от коэффициента k.
k > 0, следовательно y = kx + b возрастает на всей области определения,
k < 0, следовательно y = kx + b убывает на всей области определения.
8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
пример.рассмотрим следующую линейную функцию: y = 5x – 3.
1) d(y) = r;
2) e(y) = r;
3) функция общего вида;
4) непериодическая;
5) точки пересечения с осями координат:
ox: 5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.
oy: y = -3, следовательно (0; -3) – точка пересечения с осью ординат;
6) y = 5x – 3 – положительна при x из (3/5; +∞),
y = 5x – 3 – отрицательна при x из (-∞; 3/5);
7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.
в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).
если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.
смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.
смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.
свойства линейной функции:
1) область определения линейной функции есть вся вещественная ось;
2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;
3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.
a) b ≠ 0, k = 0, следовательно, y = b – четная;
b) b = 0, k ≠ 0, следовательно y = kx – нечетная;
c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;
d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.
4) свойством периодичности линейная функция не обладает;
5) точки пересечения с осями координат:
ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.
oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.
замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.
6) промежутки знакопостоянства зависят от коэффициента k.
a) k > 0; kx + b > 0, kx > -b, x > -b/k.
y = kx + b – положительна при x из (-b/k; +∞),
y = kx + b – отрицательна при x из (-∞; -b/k).
b) k < 0; kx + b < 0, kx < -b, x < -b/k.
y = kx + b – положительна при x из (-∞; -b/k),
y = kx + b – отрицательна при x из (-b/k; +∞).
c) k = 0, b > 0; y = kx + b положительна на всей области определения,
k = 0, b < 0; y = kx + b отрицательна на всей области определения.
7) промежутки монотонности линейной функции зависят от коэффициента k.
k > 0, следовательно y = kx + b возрастает на всей области определения,
k < 0, следовательно y = kx + b убывает на всей области определения.
8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.