Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
2-2cos^2(x)-5cosx-5=0
2cos^2(x)+5cosx+3=0
cosx=t, -1<=t<=1
2t^2+5t+3=0
D=25-24=1
t=(-5+-1)/4
-1<=t<=1
t=-1
cosx=-1
x=п+пn, n - целое число
2) 4(1-sin^2(x))-3sinx-3=0
4-4sin^2(x)-3sinx-3=0
4sin^2(x)+3sinx-1=0
sinx=t, -1<=t<=1
4t^2+3t-1=0
D=9+16=25
t=(-3+-5)/8
-1<=t<=1
t=-1
t=1/4
sinx=-1
sinx=1/4
x=-п/2+2пn, n - целое число
x=arcsin1/4+2пk, k - целое число
х=п-arcsin1/4+2пl, l - целое число
3) 2sin((x+3x)/2)sin((x-3x)/2)=0
sin2x=0
sin(-x)=0
sin2x=0
sinx=0
2x=пn, n - целое число
х=пk, k - целое число
х=пn/2
4) 2sin((3x+x)/2)cos((3x-x)/2)=0
sin2x=0
cosx=0
2x=пn, n - целое число
х=п/2+пk, k - целое число
х=пn/2
например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.