Пусть х часов работала вторая бригада, тогда первая работала 2х часов. Производительность труда второй бригады равна 0,8 га/ч, а первой - 0,8х/1,5=8x/15 га/ч. Было убрано первой бригадой (8х/15)*2х га, второй - 0,8х га, обеими бригадами вместе (0,8х/15)*2х+0,8х или 12 га.Составим и решим уравнение: (8х/15)*2х+0,8х=12 16x^2/15+0,8x-12=0 |*15/4 4x^2+3x-45=0 D=3^2-4*4*(-45)=729 x1=(-3+27)/8=3 часа - время работы 2-ой бригады x2=(-3-27)/8=-3,75<0 (не подходит) 2х=2*3=6 часов - время работы 1-ой бригады ответ: первая бригада работала 6 часов, а вторая - 3 часа.
Функция возрастает если ее производная больше нуля. а если производная меньше нуля, то функция убывает у'=3x²-2x-1 3x²-2x-1=0 D=4+12=16 x1,2=(2+-4)/6 x1=1 x2=-(1/3) (рисуем параболу на оси X) y'>0 при x∈(-∞;-(1/3)|∪|1;+∞) y'<0 при x∈|-1/3;1| точки экстремума это минимальные и максимальные значения точки в некоторой окрестности. необходимое условие y'=0 при x=-(1/3); x=1 достаточное условие это то, что при переходе через эту точку функция меняет знак. Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум. Будут вопросы спрашивай)
Производительность труда второй бригады равна 0,8 га/ч, а первой - 0,8х/1,5=8x/15 га/ч.
Было убрано первой бригадой (8х/15)*2х га, второй - 0,8х га, обеими бригадами вместе (0,8х/15)*2х+0,8х или 12 га.Составим и решим уравнение:
(8х/15)*2х+0,8х=12
16x^2/15+0,8x-12=0 |*15/4
4x^2+3x-45=0
D=3^2-4*4*(-45)=729
x1=(-3+27)/8=3 часа - время работы 2-ой бригады
x2=(-3-27)/8=-3,75<0 (не подходит)
2х=2*3=6 часов - время работы 1-ой бригады
ответ: первая бригада работала 6 часов, а вторая - 3 часа.
у'=3x²-2x-1
3x²-2x-1=0
D=4+12=16
x1,2=(2+-4)/6
x1=1
x2=-(1/3)
(рисуем параболу на оси X)
y'>0 при x∈(-∞;-(1/3)|∪|1;+∞)
y'<0 при x∈|-1/3;1|
точки экстремума это минимальные и максимальные значения точки в некоторой окрестности.
необходимое условие y'=0
при x=-(1/3); x=1
достаточное условие это то, что при переходе через эту точку функция меняет знак.
Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум.
Будут вопросы спрашивай)