Прежде чем остановиться на обед, туристы проплыли по реке 19 км, причём часть пути они проплыли по течению, часть — против течения.
Определи, какое расстояние проплыли туристы по течению, если известно, что в пути они были менее трёх часов, собственная скорость лодки равна 6 км/ч, а скорость течения реки равна 1 км/ч.
(Запиши ответ в виде двойного неравенства.)
Обозначим искомое расстояние m.
ответ: туристы проплыли по течению расстояние
.
Два самолёта вылетели в двух взаимно перпендикулярных направлениях(западном и южном). Рассмотрим прямоугольный треугольник, расстояние через два часа есть гипотенуза, и она равна 2000. Найдём остальные катеты.
Пусть скорость одного из самолётов равна x, тогда скорость другого по условию равна 0.75x. Пути, пройденные самолётами за два часа и есть катеты. Они равны
2x и 1.5x.
По теореме Пифагора гипотенуза равна:
√((2x)² + (1.5x)²) = 2000
Возведём обе части уравнения в квадрат:
4x² + 2.25x² = 4000000
6.25x² = 4000000
x² = 640000
x1 = 800; x2 = -800 - этот корень не удовлетворяет условию задачи, поскольку скорость не может быть выражена отрицательным числом
Итак, 800 км/ч - скорость одного из самолётов
Скорость другого равна 800 * 0.75 = 800 * 3/4 = 200 * 3 = 600 км/ч
Задача решена
внешний край дорожки отделяет площадь (6+2x)(9+2x) м^2 (это бассейн, с каждой стороны к которому прилеплен еще прямоугольник ширины х),
Эта площадь по условию равняется удвоенной площади бассейна:
(6+2x)(9+2x)=2*6*9
(3+x)(9+2x)=6*9=54
2x^2+15x+27=54
2x^2+15x-27=0
D=225+8*27=441=21^2
x=(-15+-21)/4
x=6/4=3/2 (второй корень отрицательный)
ответ: ширина дорожки 3/2 метра.
P.S. это решение некорректно, но, по-видимому, подразумевается авторами задачи. На самом деле внешний край дорожки отделяет площадь (6+2x)(9+2x)-4x^2+pi*x^2, т.к. в углах будут дуги окружностей. Но Тогда решение (в плане вычислений) будет "чуть более" трудоемким.