Объяснение:
2. а14 равен 2,9,
а10 равен 0,5. Найдите первый член и разность этой арифметической прогрессии.
Решение. По формуле an=(n-1)в, находим:
а14=а1+13d;
а10=а1+9d;
2,9=а1+13d; [*(-1)]
0.5 =a1+9d;
-2.9=-a1-13d;
0.5=a1+9d;
Складываем:
-2,9+0,5=-13d+9d
-2.4=-4d;
d= 0.6;
Найдем a1:
0.5=a1+9*0.6;
0.5=a1+5.4;
a1=5.4-0.5=4.9.
a1=4.9.
***
3) Найдите сумму первых двадцати девяти членов арифметической прогрессии -3,5; -3,7;...
Решение.
а1=-3,5; а2= -3,7; ... d=-3.7 - (-3.5)= -3.7 + 3.5= - 0.2;
а29=-3.5 + (29-1) *(-0.2) = -3.5 +28*(-0.2)=-3.5 - 5.6 = - 9.1;
Сумма первых n членов арифметической прогресс равна
Sn= n*(a1+an) / 2.
S=29 * (a1+a29)/2 = 29*(-3.5 -9.1)/2 = 29* (-12.6)/2= - 365.4 / 2 = -182.7
S29= -182,7.
4) Сколько первых членов арифметической прогрессии
–12; -10; -8; ...
нужно сложить, чтобы получить -36?
Sn=-36; a1=-12; d=-8 - (-10)=-8+10 = 2;
d=2;
an=a1+(n-1)d= -12+(n-1)*2= -12+2n-2= -14+2n;
Sn=n*(a1+an)/2;
-36=n*(-12-14+2n)/2;
-36=n*(-26+2n)/2;
-36=n*(-13+n);
-36=-13n+n²;
n²-13n +36=0;
По теореме Виета
n1+n2=13; n1*n2=36;
n1=9; n2=4;
a9=-12+8*2=-12+16=4;
a4=-12+3*2=-12 +6= -6;
S9=9*(-12+4)/2=9*(-8)/2=-72/2=-36;
S4=4*(-12+(-6))/2 = 4*(-18)/2 = -72/2=-36.
ответ: 9 или 4.
3. Найдите сумму первых двадцати девяти членов арифме-
тической прогрессии -3,5; -3,7;
4. Сколько первых членов арифметической прогрессии –12;
-10; -8; ... нужно сложить, чтобы получить -36?
3)f`(x)=39x²-7x
f`(0)=0
f`(-1)=39+7=46
f`(0)+f`(-1)=0+46=46
4)y`=-2x/2√(x²+1)³=-1/√(x²+1)³
5)y`=24(1/3x-64)^23 * 1/3=8(1/3x -64)^23
6)y`=1/cos²x
y`(π/3)=1/cos²π/3=1:1/4=4
7)tga=f`(x0)
f`(x)=6x²-5
f`(2)=6*4-5=24-5=19
tga=19
8)f(x)=x^8 -1
f`(x)=8x^7
9)y`=8cos3x*(-sin3x)*3=-24cos3xsin3x=-12sin6x
10)f(x)=1-4x²
f`(x)=-8x
f`(0,5)=-8*0,5=-4
11)y(1)=1+1=2
y`=4x³+1
y`(1)=4+1=5
Y=2+5(x-1)=2+5x-5=5x-3
12)f(1)=1
f`(x)=1/(2√x)
f`(1)=1/2
Y=1+1/2(x-1)=1+1/2x-1/2=1/2x+1/2
Y(31)=1/2*31+1/2=32*1/2=16
13)f`(x)=9-x²≥0
x²=9
x=+-3
_ + _
-3 3
x∈[-3;3]
14)(√x-4/√x)`=1/2√x +2/√x³=(x+4)/2√x³
Объяснение:
2. а14 равен 2,9,
а10 равен 0,5. Найдите первый член и разность этой арифметической прогрессии.
Решение. По формуле an=(n-1)в, находим:
а14=а1+13d;
а10=а1+9d;
2,9=а1+13d; [*(-1)]
0.5 =a1+9d;
-2.9=-a1-13d;
0.5=a1+9d;
Складываем:
-2,9+0,5=-13d+9d
-2.4=-4d;
d= 0.6;
Найдем a1:
0.5=a1+9*0.6;
0.5=a1+5.4;
a1=5.4-0.5=4.9.
a1=4.9.
***
3) Найдите сумму первых двадцати девяти членов арифметической прогрессии -3,5; -3,7;...
Решение.
а1=-3,5; а2= -3,7; ... d=-3.7 - (-3.5)= -3.7 + 3.5= - 0.2;
а29=-3.5 + (29-1) *(-0.2) = -3.5 +28*(-0.2)=-3.5 - 5.6 = - 9.1;
Сумма первых n членов арифметической прогресс равна
Sn= n*(a1+an) / 2.
S=29 * (a1+a29)/2 = 29*(-3.5 -9.1)/2 = 29* (-12.6)/2= - 365.4 / 2 = -182.7
S29= -182,7.
***
4) Сколько первых членов арифметической прогрессии
–12; -10; -8; ...
нужно сложить, чтобы получить -36?
Решение.
Sn=-36; a1=-12; d=-8 - (-10)=-8+10 = 2;
d=2;
an=a1+(n-1)d= -12+(n-1)*2= -12+2n-2= -14+2n;
Sn=n*(a1+an)/2;
-36=n*(-12-14+2n)/2;
-36=n*(-26+2n)/2;
-36=n*(-13+n);
-36=-13n+n²;
n²-13n +36=0;
По теореме Виета
n1+n2=13; n1*n2=36;
n1=9; n2=4;
a9=-12+8*2=-12+16=4;
a4=-12+3*2=-12 +6= -6;
S9=9*(-12+4)/2=9*(-8)/2=-72/2=-36;
S4=4*(-12+(-6))/2 = 4*(-18)/2 = -72/2=-36.
ответ: 9 или 4.
3. Найдите сумму первых двадцати девяти членов арифме-
тической прогрессии -3,5; -3,7;
4. Сколько первых членов арифметической прогрессии –12;
-10; -8; ... нужно сложить, чтобы получить -36?