При исследовании корреляционной зависимости по данным 100 предприятий между капиталовложениями х(млн. руб.) и выпуском продукции y(млн. руб.) получены следующие уравнения регрессии: y=1,2x+2 и x=0,6y+2. для аналогичных предприятий среднее значение для необходимого капиталовложения, чтобы получить выпуск продукции в 1млн. руб., составляет.
можете объяснить решение ,ответ я знаю (2.6 млн.руб)
\[x_0=-\frac{b}{2a}=-\frac{0}{2\cdot \left(-1\right)}=0\]
Подставим найденную абсциссу в уравнение функции и найдем ее ординату:
\[y_0=-0^2+4=4\]
Итак, вершиной параболы будет точка (0; 4).
Далее нужно найти точки, которые принадлежат графику параболы. Сделать это легко. Берем несколько произвольных значений переменной х и вычисляем для них значение переменной у. Полученные пары чисел будут координатами искомых точек.
х = 1: y\left(1\right)=-1^2+4=3 —точка с координатами (1; 3).
х = 2: y\left(2\right)=-2^2+4=0 —точка с координатами (2; 0).
х = —1: y\left(-1\right)=-{\left(-1\right)}^2+4=3 —точка с координатами (—1; 3).
х = —2: y\left(-2\right)=-{\left(-2\right)}^2+4=0 —точка с координатами (—2; 0). Нанесем найденные точки на координатную плоскость и начертим график функции y = —x^2 + 4
(Рисуешь точку и проводишь линии в право ,влево ,вперед и назад.Расставляешь числа ,рисуешь дугу с самого низа до верха по второе число и спускаешься вниз)Думаю понятно объяснила.
2) На первое место могут претендовать любые из десяти участников, а на второе место - любые из оставшихся девяти, поэтому
всего
3)
Выпишем все нечетные цифры:1, 3, 7, 5, 9 - всего 5 цифрПоскольку необходимо составить четырехзначные числа:Р=5⁴=625 четырехзначных чисел, состоящих из нечетных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел
Теперь четырехзначные числа, состоящие из четных цифр:0, 2, 4, 6, 8 - всего 5 четных, а значит Р=5⁴=625 четырехзначных чисел, состоящих из четных цифр.Из 4-х разных цифр:Р=5*4*3*2=120 четырехзначных чисел4)
Пятизначных чисел всего 90000 (99999 - 9999); на 2 делится каждое второе (т. е. 45000), на 5 - каждое пятое (18000)
5)
n(n-1)/2=50*49/2=1225 раз