при изготовлении деталей ABKP из металической пластины квадратной формы отпилил уголок так как показано на рисунке (KP=PR)длина стороны квадрата 12м найди площадь детали ABKP
ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
КС - биссектриса. Чтобы было удобно читать текст, обозначим
∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β ,
∠ВСК=∠АСК=ω .
ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34°
ΔВКС: α+ω+∠ВКС=180° }
ΔАКС: β+ω+∠АКС=180° }
Сложим два последних равенства:
α+β+2ω+∠ВКС+∠АКС=360°
34°+2ω=360°-(∠ВКС+∠АКС)
2ω=326°-(∠ВКС+∠АКС)
∠АКВ+∠ВКС+∠АКС=360° ⇒
∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214°
2ω=326°-214°=112°
ω=56°
∠ВСК=56°
КС - биссектриса. Чтобы было удобно читать текст, обозначим
∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β ,
∠ВСК=∠АСК=ω .
ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34°
ΔВКС: α+ω+∠ВКС=180° }
ΔАКС: β+ω+∠АКС=180° }
Сложим два последних равенства:
α+β+2ω+∠ВКС+∠АКС=360°
34°+2ω=360°-(∠ВКС+∠АКС)
2ω=326°-(∠ВКС+∠АКС)
∠АКВ+∠ВКС+∠АКС=360° ⇒
∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214°
2ω=326°-214°=112°
ω=56°
∠ВСК=56°