При измерении веса девятиклассников получили следующий ряд данных: 50; 51,5; 48; 37,5; 40; 41,5; 42; 60; 45,5; 38; 38; 43,5; 49,5; 51; 60; 40; 43,5; 44,5; 45; 37. 1.Сгруппируйте данные и составьте таблицу, указав варианты, их кратности, частоты, процентные частоты. 2.Укажите числовые характеристики: а) размах измерения; б) моду измерения; в) среднее значение; г) постройте многоугольник кратностей.
Объяснение:
Решим задачу на движение по воде
Дано:
S=45 км
S(плота)=28 км
v(теч.)=v(плота)=4 км/час
Найти:
v(собств. лодки)=? км/час
РЕШЕНИЕ
1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=4 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=28÷4=7 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 7-1=6 часов. Лодка проплыла между пристанями А и В 45 км, и вернулась обратно от пристани В к А, проплыв ещё 45 км.
Пусть х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+4 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-4 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=45/(х+4) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=45/(х-4) часа.
Всего на путь туда и обратно ушло 6 часов.
Составим и решим уравнение:
45/(х+4)+45/(х-4)=6 (умножим на (х-4)(х+4), чтобы избавиться от дробей)
45×(х-4)(х+4)/(х+4) + 45×(х+4)(х-4)/(х-4)=6(х+4)(х-4)
45(х-4) + 45(х+4)=6(х²-16)
45х-180+45х+180=6х²-96
90х=6х²-96
6х²-90х-96=0
D=b²-4ac=(-90)²+4×6×(-96)=8100+2304=10404 (√D=102)
х₁=(-b+√D)/2a=(-(-90)+102)/2×6 =192/12=16 (км/час)
х₂=(-b-√D)/2a=(-(-90) -102)/2×6=-12/12=-1 (х₂<0 - не подходит)
ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 16 км/час.
Подробнее - на -
Итак, места, где производная равна 0 - это точки перегибов (функция с увеличения идёт на спад или наоборот) .
Вот их и найдём f(x)'=3x^2-2x-1=0;
3x^2-2x-1=0;
d=4+12=16
x1=(2-4)/6=-2/6=-1/3
x2=(2+4)/6=1
а теперь посчитаем значения функции для этих двух точек, а также для двух граничных точек (ведь если функция уходит в бесконечность как при x^2 например, то крайние точки могут быть выше или ниже перегибов) .
-1: (-1)^3-(-1)^2+1+2=-1-1+1+2=1
-1/3: (-1/3)^3-(-1/3)^2+1/3+2=-1/27-1/9+1/3+2=-1/27-3/27+9/27+2=2+5/27
1: (1)^3-(1)^2-1+2=1-1-1+2=1
3/2: (3/2)^3-(3/2)^2-3/2+2=27/8-9/4-3/2+2=27/8-18/8-12/8+2=-3/8+2=1+5/8
Как видим найбольшее значение мы получили в точке -1/3 (2 целым 5/27), а найменьшее в точках -1 и 1 (единица)
Потому ответ: минимум функции 1, а максимум 2 целых 5/27
Объяснение: