При каких значениях а и р равны многочлены P(х) и К(х): 1) P(x) = x³ - 3x² + 2x - 5, K(x) = ax³ + (a + p)x² + 2x - 5;
2) P(x) = 2x³ - 4x²+ 3x + 4, K(x) = 2x³ - 4x² + (2a + p)x + a -2p;
3) P(x) = 3x³ - 5x² + (a - p)x - 7, K(x) - 3x³ + (a + p)x² + 3x - 7;
4) P(x) = -x³ + 10x² + 2x + a - 3p, K(x) = x³ + (a + p)x² + 2x - 5
решить)
1) Если натуральное число не делится на 3, то при делении на 3
оно даёт в остатке 1, или 2. Значит, его можно записать в виде:
(3n – 1) или (3n – 2), где n - натуральное число.
А) (3n – 1)² - 1 = 9n² – 6n + 1 – 1 = 9n² – 6n = 3*(3n² – 2n),
а значит делится на 3 (один из множителей (т.е. 3) делится на 3.
Б) (3n – 2)² – 1 = 9n² – 12n + 4 – 1 = 9n² – 12n + 3 =
= 3*(n² – 4n + 1), а значит делится на 3 один из множителей (т.е. 3)
делится на 3. Таким образом, разность между квадратом числа,
которое не делится на 3, и единицей делится на 3
2) эти числа можно представить как 3x+1 и 3x+2,
где х - любое натуральное число.
Тогда надо проверить на делимость на 3 следующее выражение:
(3х+2)² - (3х+1)² = 9x²+ 12x + 4 - 9x² - 6x - 1 = 6x + 3
= = 3*(2x + 1) - а это выражение делится на 3
За 1 час они очистят соответственно 1/b, 1/v, 1/s часть.
Боря и Вова вместе за 1 ч очистят 1/9 часть бассейна.
Вова и Саша вместе 1/12 часть, а Боря и Саша 1/18 часть.
{ 1/b + 1/v = 1/9
{ 1/v + 1/s = 1/12
{ 1/b + 1/s = 1/18
Сложим все три уравнения
1/b + 1/v + 1/v + 1/s + 1/b + 1/s = 1/9 + 1/12 + 1/18
2/b + 2/v + 2/s = 4/36 + 3/36 + 2/36 = 9/36 = 1/4
Делим все на 2
1/b + 1/v + 1/s = 1/8
За 1 час они втроем очистят 1/8 часть бассейна.
А весь бассейн - за 8 часов.