В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KaRaIcHiTaN
KaRaIcHiTaN
15.04.2023 00:40 •  Алгебра

При каких значениях a уравнение 2x^2 + (a^3 - 2)x + a^2 - 1 = 0 имеет корни противоположные по знаку? ответ a принадлежит ( -1: 1). не знаю как достичь ответа

Показать ответ
Ответ:
yulyakarpenko3
yulyakarpenko3
08.07.2020 13:45
Думаю, здесь не идет речь о РАВНЫХ корнях, но противоположных по знаку. Просто два корня, имеющие разные знаки. Тогда решение я вижу таким:
Пусть x1 и x2 - корни уравнения, разные по знаку (один положительный, другой отрицательный).
По теореме Виета:
\left \{ {{x_{1}*x_{2}=\frac{a^{2}-1}{2}} \atop {x_{1}+x_{2}=-\frac{a^{3}-2}{2}}} \right.
Если оба корня разные по знаку, значит произведение будет отрицательным:
\frac{a^{2}-1}{2}<0
a^{2}-1<0
-1<a<1

Теперь подумаем, какой по знаку может быть сумма, рассмотрим два варианта:
1) |x_{1}||x_{2}|, x_{1}<0 - значит сумма будет отрицательной
\left \{ {{|x_{1}||x_{2}|, x_{1}<0} \atop {- \frac{a^{3}-2}{2}<0}} \right.
\left \{ {{|x_{1}||x_{2}|, x_{1}<0} \atop {a^{3}-20}} \right.
\left \{ {{|x_{1}||x_{2}|, x_{1}<0} \atop {a \sqrt[3]{2}}} \right.
Если наложить это условие на найденное из произведения (-1<a<1), то общих решений не будет. Значит, этот вариант корней не подходит под условие задачи. Перейдем ко второму варианту.
2) |x_{1}|<|x_{2}|, x_{1}<0 - значит сумма будет положительной
\left \{ {{|x_{1}|<|x_{2}|, x_{1}<0} \atop {- \frac{a^{3}-2}{2}0}} \right.
\left \{ {{|x_{1}|<|x_{2}|, x_{1}<0} \atop {a^{3}-2<0}} \right.
\left \{ {{|x_{1}|<|x_{2}|, x_{1}<0} \atop {a< \sqrt[3]{2}}} \right.
Наложив на -1<a<1, получим решение: -1<a<1

ответ: a∈(-1;1)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота