При каких значениях а значение выражения 3,5а – 10 меньше значения выражения 6,5а + 8? *
1) а < -1
2) а> -6
3)а > -15
4) а < -15
Какое из приведенных ниже неравенств является верным при любых значенияхх и у, удовлетворяющих условию х < у? *
1) у – х > 0
2) у – х < -1
3) х – у > 3
4) х – у > -2
Сколько целых решений неравенства -1, 2с < 4,3 принадлежит промежутку (-4; 3]?
1) 3
2) 4
3) 7
4) 6
Объяснение:
4 часа 30 мин=270мин
6 часов 45 мин=405мин
1/270 часть бассейна нальет первый кран за 1 мин
1/405 часть бассейна нальет второй кран за 1 мин
1/405+1/270=5/810=1/162 часть бассейна нальют 2 крана за 1 мин
1:(1/162)=162 мин - время за которое 2 крана наполнят весь бассейн
первый кран был открыт 162 мин
162/270=3/5 - бассейна наполнит первый кран за 162 мин1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин. 1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин.
Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.