1) На оси ординат (абсцисс) отметить точку a и провести прямую y = a (x = a), перпендикулярную соответствующей оси.
2) Отметить на окружности дугу, состоящую из точек окружности, удовлетворяющих данному неравенству (эти точки расположены по одну сторону от построенной прямой).) Записать числовой промежуток, точкикоторого заполняют отмеченную дугу, и к обеим частям неравенства прибавить период функции ( для y = sin x и y = cos x )
bn=b1*q^(n-1) - формула n-го члена геометрической прогрессии => b2 = b1*q; b3=b1*q^2; b4=b1*q^3; b5=b1*q^4; b6=b1*q^5
b1+b1q+b1q^2=112 b1q^3+b1q^4+b1q^5=14
Вынесем за скобку из первого уравнения b1: b1(1+q+q^2)=112 Вынесем за скобку из второго уравнения b1q^3: b1q^3(1+q+q^2)=14 Выразим из первого уравнения (1+q+q^2): 1+q+q^2=112/b1 Подставим во второе уравнение: b1q^3*(112/b1)=14 q^3*112=14 q^3=1/8 q=1/2
Из первого уравнения: b1=112/(1+q+q^2)=112/(1+1/2+1/4)=112/(7/4)=16*4=64
Алгоритм решения тригонометрических неравенств
с единичной окружности.
1) На оси ординат (абсцисс) отметить точку a и провести прямую y = a (x = a), перпендикулярную соответствующей оси.
2) Отметить на окружности дугу, состоящую из точек окружности, удовлетворяющих данному неравенству (эти точки расположены по одну сторону от построенной прямой).) Записать числовой промежуток, точкикоторого заполняют отмеченную дугу, и к обеим частям неравенства прибавить период функции ( для y = sin x и y = cos x )
b1+b2+b3=112
b4+b5+b6=14
bn=b1*q^(n-1) - формула n-го члена геометрической прогрессии
=> b2 = b1*q; b3=b1*q^2; b4=b1*q^3; b5=b1*q^4; b6=b1*q^5
b1+b1q+b1q^2=112
b1q^3+b1q^4+b1q^5=14
Вынесем за скобку из первого уравнения b1: b1(1+q+q^2)=112
Вынесем за скобку из второго уравнения b1q^3: b1q^3(1+q+q^2)=14
Выразим из первого уравнения (1+q+q^2): 1+q+q^2=112/b1
Подставим во второе уравнение: b1q^3*(112/b1)=14
q^3*112=14
q^3=1/8
q=1/2
Из первого уравнения: b1=112/(1+q+q^2)=112/(1+1/2+1/4)=112/(7/4)=16*4=64
ответ: 64