Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
Изобразите на координатной плоскости множество решений уравнения |y^2-x^2|=y-x
| y² - x² |= y - x ; | y - x |*| y + x | = y - x необходимое ограничение : y-x ≥ 0 ⇔ y ≥ x ⇒ | y - x | = y - x ( y - x )*| y + x | = y - x ; ( y - x ) ( | y + x | -1) =0 ;
{ y ≥ x ; ( y - x ) ( | y + x | -1) =0 ⇔{ y ≥ x ; [ y - x = 0 ; y + x = -1 ; y + x = 1. ⇔ [ { y ≥ x ; y - x = 0 . { y ≥ x ; y = - x - 1 . { y ≥ x ; y = - x +1 . (равносильно совокупности трех систем уравнений) .
Множество решений уравнения |y^2-x^2|=y-x →объединение прямой y = x и двух лучей с началами в точках A(-1/2 ; -1/2) и B(1/2;1/2) точки пересечения прямой y = x соответственно с y = - x - 1 и y = - x + 1 ; прямые y = x и y = - x ± 1 перпендикулярны k₁*k₂ = 1 *(-1) = -1 ) .
Объяснение:
Войти
АнонимМатематика11 июля 20:08
Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
y = 4 - 8 - 5 = -9 - наименьшее значение функции.
| y² - x² |= y - x ;
| y - x |*| y + x | = y - x
необходимое ограничение : y-x ≥ 0 ⇔ y ≥ x ⇒ | y - x | = y - x
( y - x )*| y + x | = y - x ;
( y - x ) ( | y + x | -1) =0 ;
{ y ≥ x ; ( y - x ) ( | y + x | -1) =0 ⇔{ y ≥ x ; [ y - x = 0 ; y + x = -1 ; y + x = 1. ⇔
[ { y ≥ x ; y - x = 0 . { y ≥ x ; y = - x - 1 . { y ≥ x ; y = - x +1 .
(равносильно совокупности трех систем уравнений) .
Множество решений уравнения |y^2-x^2|=y-x →объединение прямой y = x и двух лучей с началами в точках A(-1/2 ; -1/2) и B(1/2;1/2) точки
пересечения прямой y = x соответственно с y = - x - 1 и y = - x + 1 ;
прямые y = x и y = - x ± 1 перпендикулярны k₁*k₂ = 1 *(-1) = -1 ) .