В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
говешка123
говешка123
09.09.2020 22:43 •  Алгебра

При каких значениях х трёхчлен -х^2-1/2х-1/16 принимает не отрицательные значения? Выбери правильный вариант ответа:


При каких значениях х трёхчлен -х^2-1/2х-1/16 принимает не отрицательные значения? Выбери правильный

Показать ответ
Ответ:
dariasit
dariasit
02.02.2022 20:19
[[[ 1-ый

17 \cdot 10 = 170 \ ;

221 - 170 = 51 = 17 \cdot 3 \ ;

17 \cdot 13 = 17 \cdot ( 10 + 3 ) = 17 \cdot 10 + 17 \cdot 3 = 170 + 51 = 221 \ ;

17 \cdot (-13) = -221 \ ;

17 \cdot 20 = 340 \ ;

17 \cdot 19 = 17 \cdot ( 20 - 1 ) = 17 \cdot 20 - 17 \cdot 1 = 340 - 17 = 323 \ ;

Итак:

-221 = 17 \cdot (-13) \ ;

323 = 17 \cdot 19 \ ;

между (–13) и 19 (включительно) лежат нечётные числа:
(–13), (–11), (–9), (–7), (–5), (–3), (–1), 1, 3, 5, 7, 9, 11, 13, 15, 17 и 19
– всего 17 чисел.

Нам необходимо найти сумму всех допустимых   k \ ,    каждое из которых представляет собой какое-то допустимое нечётное число, умноженное на 17, тогда можно сложить все эти допустимые нечётные числа и умножить их на 17 (вынести за скобку общий множитель).

Чтобы сложить члены арифметической последовательности (которой являются последовательные нечётные числа), нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ -13 \cdot 17 + 19 \cdot 17 }{2} \cdot 17 = \frac{ 6 \cdot 17 }{2} \cdot 17 = 3 \cdot 17^2 = 3 \cdot 289 = 867 \ ;

[[[ 2-ой

Пусть    k = 17 \cdot (2n+1) \ \ \ , n \in Z \ ;

-221 \leq k < 324 \ ; \ \ \ || : 17

-13 \leq 2n+1 < 19 \frac{1}{17} \ ; \ \ \ || -1

-14 \leq 2n < 18 \frac{1}{17} \ ; \ \ \ || :2

-7 \leq n < 9 \frac{1}{34} \ ;

Итак:

-7 \leq n < 10 \ ;

k = 17 \cdot (2n+1) = 17 \cdot 2n + 17 \cdot 1 \ ;

k = 17 + 34n \ ;

Нам необходимо найти сумму всех членов арифметической прогрессии в пределах индекса    -7 \leq n   который пробегает    10 - (-7) = 17 \    разных значений.

Чтобы сложить члены арифметической прогрессии, нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ [ 17 + 34 \cdot (-7) ] + [ 17 + 34 \cdot 9 ] }{2} \cdot 17 = \frac{ 2 \cdot 17 + 34 \cdot ( -7 + 9 ) }{2} \cdot 17 = \\\\ = ( 17 + \frac{ 34 \cdot 2 }{2} ) \cdot 17 = ( 17 + 17 \cdot 2 ) \cdot 17 = 17^2 \cdot 3 = 289 \cdot 3 = 867 \ ;

О т в е т :  867 .
0,0(0 оценок)
Ответ:
ДжастБодя
ДжастБодя
23.12.2020 05:30
1 пересыпание: Кладём гирю (8кг) и мешок (50кг) на 1-ую чашу весов и из мешка (50кг) уравновешиваем весы. Получаем на весах гирю (8кг) + мешок (21кг) = мешок (29кг).
2 пересыпание: Кладём мешок (29кг) на 1-ую чашу весов и гирю (8кг) на 2-ую чашу весов, после этого из мешка (29кг) отвешиваем мешок (8кг). Получаем в стороне мешок (21кг) и на весах мешок (8кг) = гирю (8кг).
3 пересыпание: Кладём мешок (8кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (4кг) = мешок (4кг).
4 пересыпание: Кладём мешок (4кг) на 1-ую чашу весов и уравновешиваем весы. Получаем мешок (2кг) = мешок (2кг).
5 пересыпание: Кладём мешок (2кг) на 1-ую чашу весов и уравновешиваем. Получаем мешок (1кг) = мешок (1кг).
Кладём в ответ мешок (21кг) и мешок (1кг).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота