Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.
Объяснение:
Во-первых, область определения
-x^2 - 8x - 7 >= 0
x^2 + 8x + 7 <= 0
(x + 1)(x + 7) <= 0
x = [-7; -1]
Во-вторых, выделяем корень
√(-x^2 - 8x - 7) = -ax + 2a + 3
Возводим в квадрат
-x^2-8x-7 = (-ax+2a+3)^2 = a^2*x^2-4a^2*x+4a^2-6ax+12a+9
x^2*(a^2 + 1) + x*(8 - 4a^2 - 6a) + (7 + 4a^2 + 12a + 9) = 0
x^2*(a^2 + 1) + 2x*(-2a^2 - 3a + 4) + (4a^2 + 12a + 16) = 0
Получили квадратное уравнение.
Если оно имеет только 1 корень, то D = 0
D/4 = (-2a^2 - 3a + 4)^2 - (a^2 + 1)(4a^2 + 12a + 16) =
= (4a^4 + 12a^3 + 9a^2 - 16a^2 - 24a + 16) -
- (4a^4 + 4a^2 + 12a^3 + 12a + 16a^2 + 16) =
= 9a^2 - 16a^2 - 24a - 4a^2 - 12a - 16a^2 = -27a^2 - 36a = -9a(3a + 4) = 0
a1 = 0; a2 = -4/3
Подставляем эти а и проверяем х.
1) a = 0
0 + √(-x^2 - 8x - 7) = 3
-x^2 - 8x - 7 = 9
-x^2 - 8x - 16 = -(x + 4)^2 = 0
x1 = x2 = -4
2) a = -4/3
-4x/3 + √(-x^2 - 8x - 7) = -8/3 + 3 = 1/3
√(-x^2 - 8x - 7) = 4x/3 + 1/3 = (4x + 1)/3
9(-x^2 - 8x - 7) = (4x + 1)^2
-9x^2 - 72x - 63 = 16x^2 + 8x + 1
25x^2 + 80x + 64 = (5x + 8)^2 = 0
x1 = x2 = -8/5