4x³+4x²+mx=0 х(4x²+4x+m)=0 Один корень всегда равен 0, т.е. х1=0. Уравнение будет иметь 2 корня, если 1) один корень уравнения 4x²+4x+m=0 равен 0, а второй не равен 0. т.е. по теореме Виета m=0. В этом случае x²+x=0, т.е. х(х+1)=0, т.е. х2=-1≠0.
2) оба корня уравнения 4x²+4x+m=0 совпадают и отличны от 0, т.е. D/4=4-4m=0, значит m=1. В этом случае 4x²+4x+1=0, т.е. (2х+1)²=0, т.е. х2=-1/2≠0. Итак, ответ при m=0 и при m=1.
х(4x²+4x+m)=0
Один корень всегда равен 0, т.е. х1=0.
Уравнение будет иметь 2 корня, если
1) один корень уравнения 4x²+4x+m=0 равен 0, а второй не равен 0.
т.е. по теореме Виета m=0. В этом случае x²+x=0, т.е. х(х+1)=0, т.е. х2=-1≠0.
2) оба корня уравнения 4x²+4x+m=0 совпадают и отличны от 0, т.е. D/4=4-4m=0, значит m=1. В этом случае 4x²+4x+1=0, т.е. (2х+1)²=0, т.е. х2=-1/2≠0. Итак, ответ при m=0 и при m=1.