Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]
Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
\[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]
ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}
54 варианта.
Объяснение:
По 2 натуральных слагаемых:
7 = 6+1 = 5+2 = 4+3 = 3+4 = 2+5 = 1+6
6 вариантов.
По 3 натуральных слагаемых:
7 = 5+1+1 = 4+2+1 = 4+1+2 = 3+3+1 = 3+2+2 = 3+1+3 = 2+2+3 = 2+4+1 = 2+3+2 = 2+1+4 = 1+3+3 = 1+2+4 = 1+4+2 = 1+5+1 = 1+1+5
15 вариантов.
По 4 натуральных слагаемых:
7 = 4+1+1+1 = 3+2+1+1 = 3+1+1+2 = 3+1+2+1 = 2+2+2+1 = 2+2+1+2 = 2+1+2+2 = 1+3+1+2 = 1+3+2+1 = 1+2+3+1 = 1+2+1+3 = 1+1+2+3 = 1+1+3+2 = 1+2+2+2 = 1+1+1+4
15 вариантов.
По 5 натуральных слагаемых:
7 = 3+1+1+1+1 = 2+2+1+1+1 = 2+1+2+1+1 = 2+1+1+2+1 = 2+1+1+1+2 = 1+2+2+1+1 = 1+2+1+2+1 = 1+2+1+1+2 = 1+1+2+1+2 = 1+1+2+2+1 = 1+1+1+2+2
11 вариантов.
По 6 натуральных слагаемых:
7 = 2+1+1+1+1+1 = 1+2+1+1+1+1 = 1+1+2+1+1+1 = 1+1+1+2+1+1 = 1+1+1+1+2+1 = 1+1+1+1+1+2
6 вариантов.
По 7 натуральных слагаемых:
7 = 1+1+1+1+1+1+1
1 вариант.
Всего 6+15+15+11+6+1 = 54 варианта.