5) 5y+2(3-4y)=2y+21 5y+6-8y=2y+21 -3y+6=2y+21 5y=-15 y=-3 6) пусть боковая сторона - х, тогда основание х+8 Р=х+х+8+х=44 3х=36 х=12-боковая сторона 12+8=20 - основание стороны треугольника 12, 12, 20 7) x^2-xy-4x+4y x^2-yx-4x+4y (x-y)(x-4) (x-4)(x-y) 8) Для этого нужно решить соответствующую систему уравнений 2х + 3у = -12 4х - 6у = 0 Умножим 1-е уравнение на 2 (4х + 6у = -24) и сложим со вторым, получим 8х = -24, х = -3 Подставим -3 вместо х в 1-е уравнение, получим -6 + 3у = -12 3у = -6 у = -2 ответ х = -3 у = -2 Это и есть координаты точки пересечения прямых. 9) - 10)
Делим 180 на три равные части = 180/3 = 60 градусов.
Таким образом мы нашли меньший угол (он составляет 1/3 от развернутого угла по условию) . Больший угол составляет 2/3 от развернутого угла, поэтому он равняется 2*60 = 120 градусов.
5y+2(3-4y)=2y+21
5y+6-8y=2y+21
-3y+6=2y+21
5y=-15
y=-3
6)
пусть боковая сторона - х, тогда основание х+8
Р=х+х+8+х=44
3х=36
х=12-боковая сторона
12+8=20 - основание
стороны треугольника 12, 12, 20
7)
x^2-xy-4x+4y
x^2-yx-4x+4y
(x-y)(x-4)
(x-4)(x-y)
8)
Для этого нужно решить соответствующую систему уравнений
2х + 3у = -12
4х - 6у = 0
Умножим 1-е уравнение на 2 (4х + 6у = -24) и сложим со вторым, получим 8х = -24, х = -3
Подставим -3 вместо х в 1-е уравнение, получим
-6 + 3у = -12
3у = -6
у = -2
ответ
х = -3
у = -2
Это и есть координаты точки пересечения прямых.
9) -
10)
2(3x-y)-5=2x-3y
5-(x-2y)=4y+16
2(3x-y)-5=2x-3y
4x+y-5=0
y=-4x+5
5-(x-2y)=4y+16
-11-x-2y=0
-11-x-2*(-4x+5)=0
-21+7x=0
x=21/7
x=3
4x+y-5=0
4*3+y-5=0
7+y=0
y=-7
11)
Сумма смежных углов - 180 градусов (они составляют развернутый угол) .
Делим 180 на три равные части = 180/3 = 60 градусов.
Таким образом мы нашли меньший угол (он составляет 1/3 от развернутого угла по условию) .
Больший угол составляет 2/3 от развернутого угла, поэтому он равняется 2*60 = 120 градусов.
ответ: 60 и 120 градусов.
ОДЗ:
{10-x²-1≥0 ⇒ 9-x²≥0 _-_[-3]_+_[3]_-_ ⇒ -3≤x≤3
cos(2x+(π/2))=0
2x+(π/2)=(π/2)+πk, k∈Z
2x=πk, k∈Z
x=(π/2)·k, k∈Z
Найдем корни удовлетворяющие неравенству -3≤x≤3:
-3 ≤ (π/2)·k ≤ 3, k∈Z;
-2< -6/π ≤ k ≤ 6/π<2- неравенство верно при k=-1; k=0; k=1.
x=-π/2; x=0; x= π/2 - корни уравнения.
√(10-х²-1)=0 ⇒ х=-3 или х=3
х=-3; х=3 - корни уравнения.
О т в е т. -3;-π/2; 0; π/2; 3.