В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gussamovadel
gussamovadel
04.02.2020 00:15 •  Алгебра

При каких значениях параметра а уравнение (2a^2 - 3a - 2)x^2+(a^3-4a)x+3a^2+a-14=0 имеет больше двух корней?

Показать ответ
Ответ:
Barcelona2004
Barcelona2004
08.10.2020 21:34
Квадратное уравнение не может иметь более двух решений. Однако, если в уравнении ax²+bx+c=0, где a,b,c=0, то уравнение превращается в 0x=0, тогда решений бесконечно много.
При каких значениях параметра а уравнение (2a^2 - 3a - 2)x^2+(a^3-4a)x+3a^2+a-14=0 имеет больше двух
0,0(0 оценок)
Ответ:
Анастасия2007997
Анастасия2007997
08.10.2020 21:34

Если коэффициент при x^2 не равняется нулю, то тут более двух корней квадратное уравнение не будет иметь, так как согласно теореме алгебры квадратное уравнение имеет не более двух корней.


Осталось сделать все коэффициенты нулевыми

2a^2-3a-2=0\\ a_1=-0.5\\ a_2=2

a^3-4a=0\\ a(a^2-4)=0\\ a_3=0\\ a_4=2\\ a_5=-2

3a^2+a-14=0\\ a_6=-7/3\\ a_7=2


Общее а=2, т.е. при а = 2 уравнение превратится в 0х=0, где x - любой корень

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота