В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gdhdf
gdhdf
11.02.2023 13:19 •  Алгебра

При каких значениях параметра а уравнение а(2а+4)х^2-(a+2)x-5a-10=0
имеет больше одного решения?

Показать ответ
Ответ:
dauletkulova
dauletkulova
20.09.2021 06:00

ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.

Пошаговое объяснение: Рассмотрим отдельно случай, когда а = 0. Имеем следующее уравнение: -2x = 10, имеющее единственный корень. Данное значение а нам не подходит.

Пусть а = -2. Имеем следующее уравнение:

0x² - (0+2)x +10 - 10 = 0; 10 = 10 ⇒ x - любое число. Корней бесконечно много, поэтому это значение параметра нам подходит.

Если а ≠ 0, то уравнение - квадратное и имеет больше одного корня, если его дискриминант D > 0.

Найдем дискриминант:

D = (-(a+2))² - 4a(2a + 4)(-5a - 10) = a² + 4a + 4 + 4a(2a + 4)(5a

+ 10) = a²+ 4a + 4 + 4a(10a² + 20a + 20a + 40) = a² + 4a + 4 + 40a³ + 160a² + 160a = 40a³ + 161a² + 164a + 4 > 0.

40a³ + 161a² + 164a + 4 > 0

40a³ + a² + 160a² + 4a + 160a + 4 > 0

a²(40a + 1 ) + 4a(40a + 1) + 4(40a + 1) > 0

(40a + 1)(a² + 4a + 4)>0

(40a + 1)(a + 2)²> 0

40a+ 1 > 0 ⇒ a > -1/40.

Не забываем про a = -2 и а = 0, записываем ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота