При каких значениях параметра b имеет единственный корень уравнение: 1)2x²+4x *- b=0 2)3x² - bx+12=0 Решите подробно,что бы было видно,что откуда взялось!
Преобразуем выражение x³-3x²-x+3=0 х²(х-3)-1*(х-3)=0 Вынесем общий множитель х-3, получим (х-3)(х²-1)=0 т. к. а²-в²=(а-в) (а+в) , получим (х-3)(х-1)(х+1)=0 Произведение равно нулю, если один из множителей равен нулю, т. е. х-3=0 или х-1=0 или х+1=0, отсюда х=3 или х=1 или х=-1 ответ уравнение имеет три корня 3; 1; -1 решите неравенство -2x²-5x больше либо равно -3 -2x²-5x ≥-3 или -2x²-5x +3≥0 Решим уравнение -2x²-5x +3=0 Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49 Корни квадратного уравнения определим по формуле х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3 х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½ т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3) Отметим на числовой оси все корни уравнения и определим знак каждого промежутка -___-3+½-х у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси) у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси) у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси) Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]
x³-3x²-x+3=0
х²(х-3)-1*(х-3)=0
Вынесем общий множитель х-3, получим
(х-3)(х²-1)=0
т. к. а²-в²=(а-в) (а+в) , получим
(х-3)(х-1)(х+1)=0
Произведение равно нулю, если один из множителей равен нулю, т. е.
х-3=0 или х-1=0 или х+1=0, отсюда
х=3 или х=1 или х=-1
ответ уравнение имеет три корня 3; 1; -1
решите неравенство -2x²-5x больше либо равно -3
-2x²-5x ≥-3
или -2x²-5x +3≥0
Решим уравнение
-2x²-5x +3=0
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49
Корни квадратного уравнения определим по формуле
х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3
х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½
т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3)
Отметим на числовой оси все корни уравнения и определим знак каждого промежутка
-___-3+½-х
у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси)
у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси)
у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси)
Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]
ответ: 8,46 см²
Объяснение: y=2x²-6 парабола с вершиной в точке(0;-6) и корнями (2;-2)
проведем прямую через точки (2;0) и (0;-6)
-2y=-6x+12
y=3x-6
теперь найдем уравнение касательной к параболе
2x²-6=3x-n (тк у параболы и касательной одна общая точка , то дискриминант будет равен 0)
2x²-3x-6+n=0
D=0⇒b²-4ac=0
9-4*(n-6)*2=0
9+48-8n=0
8n=57
n=57/8⇒ уравнение касательной
у=3x-57/8 она пересекает ось OX в точке
3x-57/8=0
3x=57/8
x=19/8
ось OY пересекает в точке
y=-57/8
тогда наименьшая площадь прямоугольного треугольника ограниченного осями OX и OY и касательной к параболе y=2x²-6
S=(x*y)/2=(19/8*57/8)/2=1083/128=8.46 см²