Найдем производную у`=(6x-3tgx-1,5π +2)`= 6-3·(1/cos²x). Решим уравнение y`=0 3/cos²x = 6; cos²x=1/2 ⇒ cosx = - √2/2 или cosx = √2/2 х= ± arccos(- √2/2 )+2πk, k ∈ Z или х= ±arccos(√2/2 )+2πn, n ∈ Z;
х= ±(π - arccos( √2/2 ))+2πk, k ∈ Z или х= ±(π/4)+2πn, n ∈ Z; х= ±(π- (π/4))+2πk, k ∈ Z. х= ±(3π/4)+2πk, k ∈ Z. Указанному отрезку принадлежат два значения π/4 и -π/4
Находим значения самой функции в этих точках и на концах отрезка и выбираем среди них наибольшее и наименьшее.
у`=(6x-3tgx-1,5π +2)`= 6-3·(1/cos²x).
Решим уравнение y`=0
3/cos²x = 6;
cos²x=1/2 ⇒
cosx = - √2/2 или cosx = √2/2
х= ± arccos(- √2/2 )+2πk, k ∈ Z или х= ±arccos(√2/2 )+2πn, n ∈ Z;
х= ±(π - arccos( √2/2 ))+2πk, k ∈ Z или х= ±(π/4)+2πn, n ∈ Z;
х= ±(π- (π/4))+2πk, k ∈ Z.
х= ±(3π/4)+2πk, k ∈ Z.
Указанному отрезку принадлежат два значения π/4 и -π/4
Находим значения самой функции в этих точках и на концах отрезка
и выбираем среди них наибольшее и наименьшее.
у(-π/3)=6·(-π/3)-3tg(-π/3)-1,5π+2=-2π-3·(-√3)-1,5π+2=-3,5π+3√3+2≈-2,32;
у(-π/4)=6·(-π/4)-3tg(-π/4)-1,5π+2=(-3π/2)-3·(-1)-1,5π+2=-3π+3+2=-3π+5≈-4,42
у(π/4)=6·(π/4)-3tg(π/4)-1,5π+2=(3π/2)-3-1,5π+2=-1.
у(π/3)=6·(π/3)-3tg(π/3)-1,5π+2=2π-3·√3-1,5π+2=(π/2)+2-3·√3≈-1,53.
у(-π/4)=5-3π наименьшее значение функции.
у(π/4)=-1 наибольшее значение функции
3 - x - (4 - 2x) = 3 - x - 4 + 2x = x - 1 = -5
x = -4 < 2 - подходит
При 2 <= x < 3 будет |2x-4| = 2x - 4; |x-3| = 3 - x
3 - x - (2x - 4) = 3 - x - 2x + 4 = 7 - 3x = -5
3x = 12; x = 4 > 3 - не подходит.
При x >= 3 будет |2x-4| = 2x - 4; |x-3| = x - 3
x - 3 - (2x - 4) = x - 3 - 2x + 4 = 1 - x = -5
x = 6 > 3 - подходит.
ответ: x1 = -4; x2 = 6
2) Если x < -1, то |2x+2| = -2x - 2; |x-2| = 2 - x
2 - x - (-2x - 2) = 2 - x + 2x + 2 = x + 4 = 1
x = -3 < -1 - подходит
Если -1 <= x < 2, то |2x+2| = 2x + 2; |x-2| = 2 - x
2 - x - (2x + 2) = 2 - x - 2x - 2 = -3x = 1
x = -1/3 ∈ (-1; 2) - подходит
Если x >= 2, то |2x+2| = 2x + 2; |x-2| = x - 2
x - 2 - (2x + 2) = x - 2 - 2x - 2 = -x - 4 = 1
x = -5 < 2 - не подходит
ответ: x1 = -3; x2 = -1/3