б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа Хв-Ха Ув-Уа
Получаем уравнение в общем виде: АВ: 4х - 8 = 3у - 6 или АВ: 4х - 3у - 2 = 0 Это же уравнение в виде у = кх + в: у = (4/3)х - (2/3). Угловой коэффициент к = 4/3.
ВС : Х-Хв = У-Ув Хс-Хв Ус-Ув
ВС: 2х + у - 16 = 0. ВС: у = -2х + 16. Угловой коэффициент к = -2.
в) Внутренний угол В:Можно определить по теореме косинусов. Находим длину стороны ВС аналогично стороне АВ: BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977 cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0.447214 Угол B = 1.107149 радиан = 63.43495 градусов.
т.к. при выкладывании по 8 и 9 плиток не получается ровного ряда, то количество плиток — такое число, которое делится на 8 и 9 с остатками.
у числа, делящегося на 8 остаток не может быть больше семи. по условию это число на 6 больше, чем при делении на 9. хзначит остаток от деления на 8 может быть равен только 7, а остаток от деления на 9 равен 1.
также количество плиток меньше ста, т.к. тогда бы их хватило на квадратную площадку 10×10.
среди чисее меньше ста надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком один.
начнём с восьми: остаток 7 означает, что число должно быть на единицу меньше, чем числа, которые делятся на 8 ровно, т.е.: 15, 23, 31, 39, 47, 55, 63, 72.
девять: число с остатком 1 означает, что искомое число на единицу больше, чем допустим числа в таблице умножения на девять, т.е.: 19, 28, 37, 46, 55, 64, 74.
из всех перечисленных чисел видно, что совпадает только одно.
б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа
Хв-Ха Ув-Уа
Получаем уравнение в общем виде:
АВ: 4х - 8 = 3у - 6 или
АВ: 4х - 3у - 2 = 0
Это же уравнение в виде у = кх + в:
у = (4/3)х - (2/3).
Угловой коэффициент к = 4/3.
ВС : Х-Хв = У-Ув
Хс-Хв Ус-Ув
ВС: 2х + у - 16 = 0.
ВС: у = -2х + 16.
Угловой коэффициент к = -2.
в) Внутренний угол В:Можно определить по теореме косинусов.
Находим длину стороны ВС аналогично стороне АВ:
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0.447214
Угол B = 1.107149 радиан = 63.43495 градусов.
Можно определить векторным
Пусть координаты точек
A: (Xa, Ya) = (2; 2) .
B: (Xb, Yb) = (5; 6).
С: (Xc, Yc) = (6; 4).
Находим координаты векторов AB и BС:
AB= (Xb-Xa; Yb-Ya) = ((5 - 2); (6 - 2)) = (3; 4);
BС= (Xc-Xв; Yс-Yв) = ((6 - 5); (4 - 6)) = (1; -2).
Находим длины векторов:
|AB|=√((Xb-Xa)² + (Yb-Ya)^2) = 5 ( по пункту а)
|ВС|=√((Xс-Xв)²+(Yс - Yв) = √(1²+(-2)²) = √5 = 2.236067977.
b=cos α=(AB*ВС)/(|AB|*|ВС|
AB*ВC = (Xв - Xa)*(Xc - Xв) + (Yв - Ya)*(Yc - Yв) =
= 3*1 + 4*(-2) = 3 - 8 = -5.
b = cosα = |-5| / (5*2.236067977) = 5 / 11.18034 = 0.447213620
Угол α=arccos(b) = arc cos 0.4472136 = 1.1071487 радиан = 63.434949°.
г) Уравнение медианы АЕ.
Находим координаты точки Е (это основание медианы АЕ), которые равны полусумме координат точек стороны ВС.
3x - 6 = 3,5y - 7
3x - 3,5y + 1 =0, переведя в целые коэффициенты:
6х - 7у + 2 = 0,
С коэффициентом:
у = (6/7)х + (2/7) или
у = 0.85714 х + 0.28571.
т.к. при выкладывании по 8 и 9 плиток не получается ровного ряда, то количество плиток — такое число, которое делится на 8 и 9 с остатками.
у числа, делящегося на 8 остаток не может быть больше семи. по условию это число на 6 больше, чем при делении на 9. хзначит остаток от деления на 8 может быть равен только 7, а остаток от деления на 9 равен 1.
также количество плиток меньше ста, т.к. тогда бы их хватило на квадратную площадку 10×10.
среди чисее меньше ста надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком один.
начнём с восьми: остаток 7 означает, что число должно быть на единицу меньше, чем числа, которые делятся на 8 ровно, т.е.: 15, 23, 31, 39, 47, 55, 63, 72.
девять: число с остатком 1 означает, что искомое число на единицу больше, чем допустим числа в таблице умножения на девять, т.е.: 19, 28, 37, 46, 55, 64, 74.
из всех перечисленных чисел видно, что совпадает только одно.
ответ: 55 плиток