А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
Раскрываем скобки, если (-) и (-), то плюс будет; если(+) и (-), то минус будет; если(+) и (+), то плюс будет; перемножаем и считаем раздельно цифры и буквы,
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1) - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2)
или
y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
а)6а-2(3а-9)= 6а-2•3а-2• (-9)= 6а-6а-(-18)= 0+18= 18.
г)7(х+2)-х+2= 7•Х+7•2-Х+2=7Х+14-Х+2= 6Х+16;
можно дальше = 2•(3х+8);
б)2х-5(х+5)-а= 2Х-5•Х-5•5-а= 2Х-5Х-25-а= -3Х-25-а;
можно = -(3х+25+а); если можно снова в скобку
д)4(а-b)+24-a= 4•а-4•b+ 24-a= 4a-4b+24-a= 3a-4b+24;
в)5(b-9)-6b+45= 5•b-5•9-6b+45= 5b-45-6b+45= -b;
е)b-1-2(b+3)-1= b-1-2•b-2•3-1= b-1-2b-6-1= -b-8;
тут можно ещё = -(b+8);