Делай примерно так,просто другие числа подставь! Пусть 2-й рабочий делает Х дет/ч, тогда 1-й делает Х+3 дет/ч. Время изготовления 72 деталей первым рабочим равно t1=72/Х часов. Время изготовления 108 деталей вторым рабочим равно t2=108/Х+3 часов. По условию t1 на 6 часов меньше, чем t2, т.е. 72/Х + 6 = 108/Х+3 Приводим все части этого уравнения к знаменателю Х(Х+3) и переносим всё в левую часть, получаем: (72Х + 6Х^2 + 18Х -108Х -324)/Х(Х+3) = 0 что равносильно 72Х + 6Х^2 + 18Х -108Х -324 = 0 Делим обе части уравнения на 6: Х^2 - 3Х -54 = 0 D = 225 Х1 = 9 и Х2 = -6 (посторонний корень) ответ: второй рабочий делает 9 дет/час.
Пусть 2-й рабочий делает Х дет/ч, тогда 1-й делает Х+3 дет/ч.
Время изготовления 72 деталей первым рабочим равно t1=72/Х часов. Время изготовления 108 деталей вторым рабочим равно t2=108/Х+3 часов. По условию t1 на 6 часов меньше, чем t2, т.е. 72/Х + 6 = 108/Х+3 Приводим все части этого уравнения к знаменателю Х(Х+3) и переносим всё в левую часть, получаем: (72Х + 6Х^2 + 18Х -108Х -324)/Х(Х+3) = 0 что равносильно 72Х + 6Х^2 + 18Х -108Х -324 = 0 Делим обе части уравнения на 6: Х^2 - 3Х -54 = 0 D = 225 Х1 = 9 и Х2 = -6 (посторонний корень) ответ: второй рабочий делает 9 дет/час.
1) Справа нечетное число -> слева тоже -> четность x² и y² разная -> четность x и y разная.
Допустим, что x четное, а y нечетное(они взаимозаменяемы в данном уравнении, поэтому аналогичные рассуждения будут и для нечетного x)
Тогда x = 2k, y = 2l+1
Подставим: 4k²+4l²+4l+1=4z-1 ⇔ (k²+l²+l-z)=-1/2 - целое число равно не целому. Противоречие. А значит решений нет
2) Рассмотрим остатки от деления x³ на 7 в зависимости от остатка x при делении на 7: 0->0, 1->1, 2->1, 3->6, 4->1, 5->6, 6->6
С другой стороны, из условия получаем, что x³+5≡0(mod 7) -> x³≡2(mod 7). Противоречие. А значит решений нет.
3) Рассмотрим остатки от деления x² на 7 в зависимости от остатка x при делении на 7: 0->0, 1->1, 2->4, 3->2, 4->2, 5->4, 6->1
С другой стороны, из условия получаем, что x²≡3(mod 7). Противоречие. А значит решений нет.