В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
лол1635
лол1635
16.04.2020 13:17 •  Алгебра

При каком наибольшем значение а, уравнение имеет один корень? f(x)=2ax+|x^2-8x+7|

Показать ответ
Ответ:
serpermiakov
serpermiakov
06.06.2020 23:18

Уравнения в условии не написано, там задана ф-ия!

Имеется видимо в виду уравнение:

2ax +|x² - 8x + 7|= 0

Или:

|x² - 8x + 7| = -2ax

Проанализируем:

Левая часть заведомо неотрицательна. Значит при x>0, a должно быть отрицательным, а при x<0 а должно быть положительным. Так как в задаче необходимо найти максимально возможное значение а, выбираем случай, когда x<0, a>0

При x<0 выражение под знаком модуля заведомо положительное. Поэтому можно значок модуля убрать!

x² + (2a-8)x + 7 = 0

Находим дискриминант и приравняем его к 0:

D = (2a-8)²-28 = 0

4a² - 32a + 36 = 0

a² - 8a + 9 = 0

По теореме Виета имеем два корня:

а₁ = 9;   а₂ = -1

Выбираем положительный: а = 9

ответ: при а = 9.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота