Уравнение с полиномом третьей степени всегда имеет точно три корня. Либо они все три действительные, либо один действительный, а два других комплексно-сопряженные... Поэтому ответ - никогда! Но допустим, что вопрос сформулирован некорректно, и имелось в виду, что два из трех действительных корней совпадают по значению. Проанализируем этот вариант. Известно, что для кубического уравнения вида существует понятие дискриминанта, который вычисляется по следующей формуле:
В нашем случае A=1, B=0, C=-3, D=2-a, тогда Подставив значения получим условием совпадения двух корней является условие , что приводит нас к уравнению 27(4-(2-a)²)=0 ⇒ 4-(2-a)²=0; 4=(2-a)²
Известно, что для кубического уравнения вида существует понятие дискриминанта, который вычисляется по следующей формуле:
В нашем случае A=1, B=0, C=-3, D=2-a, тогда
Подставив значения получим
условием совпадения двух корней является условие , что приводит нас к уравнению 27(4-(2-a)²)=0 ⇒ 4-(2-a)²=0; 4=(2-a)²