Объяснение:
2^x^2 *2^(x-1) < 2^(3(*x/3 +3)), 2^(x^2+x-1) < 2^(x+9) ( ^-знак степени)
x^2+x-1<x+9, x^2 -10<0, (x-V10)*(x+V10)<0, + + + + + (-V10) - - - - -- (V10) ,
ответ (-V10; V10) (V-корень)
В решении.
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√6). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√6 = √а
(3√6)² = (√а)²
9*6 = а
а=54;
b) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
с) y∈ [12; 21]. Найдите значение аргумента.
12 = √х
(12)² = (√х)²
х=144;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [144; 441] y∈ [12; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4
Неравенство у ≤ 2 выполняется при х <= 4.
Объяснение:
2^x^2 *2^(x-1) < 2^(3(*x/3 +3)), 2^(x^2+x-1) < 2^(x+9) ( ^-знак степени)
x^2+x-1<x+9, x^2 -10<0, (x-V10)*(x+V10)<0, + + + + + (-V10) - - - - -- (V10) ,
ответ (-V10; V10) (V-корень)
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√6). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√6 = √а
(3√6)² = (√а)²
9*6 = а
а=54;
b) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
с) y∈ [12; 21]. Найдите значение аргумента.
12 = √х
(12)² = (√х)²
х=144;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [144; 441] y∈ [12; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4
Неравенство у ≤ 2 выполняется при х <= 4.