В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
танзила016
танзила016
15.04.2021 15:39 •  Алгебра

При каком значении b система уравнений 4х + by =10
2x – Зу = 5
А) -6;
В) 3;
Б) 6;
Г) такого значения не существует​

Показать ответ
Ответ:
Пикантные
Пикантные
11.05.2021 17:15

7–10. Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней. Решаем уравнения, находим корни уравнения и сравниваем ответы.

7. 1) {x}^{2} = - 1

число в корне не может равняться отрицательному числу, корней уравнения нет.

2) |x| = - 2

число в модуле не может равняться отрицательному числу, корней уравнения нет.

=> уравнения равносильные.

8. 1) x + 3 = 3 + x

0 = 0

корней уравнения нет.

2) \frac{x + 3}{x + 3} = 1

1 = 1

корней уравнения нет.

=> уравнения равносильные.

9. 1) \frac{ {x}^{2} - 4}{x - 2} = 0

ОДЗ: x - 2≠0, x≠2;

{x}^{2} - 4 = 0

{x}^{2} = 4

x = ± \sqrt{4}

x_1 = 2(не удовлетворяет ОДЗ), x_2 = - 2

ответ: - 2

2) {x}^{2} - 4 = 0

{x}^{2} = 4

x = ± \sqrt{4}

x_1 = 2, x_2 = - 2

ответ: - 2; 2

=> уравнения не равносильные.

10. 1) \frac{ {(x + 2)}^{2} }{x - 1} = 0

ОДЗ: x - 1≠0, x≠1;

{(x + 2)}^{2} = 0

x + 2 = 0

x = - 2

ответ: - 2

2) x + 2 = 0

x = - 2

ответ: - 2

=> уравнения равносильные.

\:

12–16. Необходимо найти сумму корней уравнения. Решаем уравнение, находим корни уравнения, складываем их. Если уравнение имеет один корень, то суммой (ответом) будет значение корня уравнения.

12. \frac{ {x}^{2} - 9 }{x + 3} = 0

ОДЗ: x + 3≠ 0, x≠ - 3;

{x}^{2} - 9 = 0

{x}^{2} = 9

x = ± \sqrt{9}

x_1 = 3, x_2 = - 3(не удовлетворяет ОДЗ)

ответ: 3

13. \frac{x + 3}{x} - 2 = 0

ОДЗ: x≠0;

\frac{x + 3}{x} = 2

\frac{x + 3}{x} = \frac{2}{1}

(x + 3) \times 1 = x \times 2

x + 3 = 2x

x - 2x = - 3

- x = - 3

x = 3

ответ: 3

14. \frac{x}{x + 2} = 2

ОДЗ: x + 2≠0, x≠ - 2;

\frac{x}{x + 2} = \frac{2}{1}

x \times 1 = (x + 2) \times 2

x = 2x + 4

x - 2x = 4

- x = 4

x = - 4

ответ: - 4

15. \frac{3}{x - 2} = \frac{2}{x - 3}

ОДЗ: x - 2≠0, x≠2, x - 3≠0, x≠3;

\frac{3}{x - 2} = \frac{2}{x - 3}

3 \times (x - 3) = (x - 2) \times 2

3x - 9 = 2x - 4

3x - 2x = 9 - 4

x = 5

ответ: 5

16. \frac{3 {x}^{2} + 1 }{x} = 3x - 1

ОДЗ: x≠0;

\frac{3 {x}^{2} + 1 }{x} = \frac{3x - 1}{1}

(3 {x}^{2} + 1) \times 1 = x \times (3x - 1)

3 {x}^{2} + 1 = 3 {x}^{2} - x

3 {x}^{2} - 3 {x}^{2} + x = - 1

x = - 1

ответ: - 1

0,0(0 оценок)
Ответ:
викуша131
викуша131
08.10.2021 01:16
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота