У = х³ - 3х + 1 производная y' = 3х² - 3 приравниваем y' = 0 и на ходим точки экстремумов 3(х² - 1) = 0 3(х + 1)(х - 1) = 0 Точки экстремумов х1 = -1; х2 = 1; График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум. В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума. Найдём минимальное и максимальное значение функции 1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3 2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
Пусть х га - площадь, которую тракторист планировал вспахивать за день. Тогда х + 6 га - площадь, которую вспахивал тракторист в действительности. По условию задачи, площадь поля = 224 га, следовательно, по плану тракторист должен был завершить работу за 224 : х дней; в условии задачи также указано, что работа была завершена на 12 дней раньше срока. Составим уравнение:
(см. приложенное фото)
Решив уравнение, находим, что тракторист планировал вспахивать по 8 га в день. Теперь определим, за сколько дней тракторист вспахал поле в действительности:
производная
y' = 3х² - 3
приравниваем y' = 0
и на ходим точки экстремумов
3(х² - 1) = 0
3(х + 1)(х - 1) = 0
Точки экстремумов х1 = -1; х2 = 1;
График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум.
В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума.
Найдём минимальное и максимальное значение функции
1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3
2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
(см. приложенное фото)
Решив уравнение, находим, что тракторист планировал вспахивать по 8 га в день. Теперь определим, за сколько дней тракторист вспахал поле в действительности:
224 : (8 + 6) = 224 : 14 = 16
ответ: за 16 дней